MACHINE LEARNING FOR HEALTHCARE 6.S897, HST.S53

Lecture 7: Physiological and laboratory time-series

Prof. David Sontag MIT EECS, CSAIL, IMES

Outline of today's class

- 1. State space models for physiological condition modeling
- 2. Physiological assessment score for preterm infants
- 3. RNNs with missing values (on MIMIC)
- 4. CNNs for predicting disease onsets from longitudinal lab tests
- 5. Project discussion

Labs and physiological time-series

- Typical use cases:
 - 1. Risk stratification, e.g. predict clinical deterioration, or diagnosis
 - 2. Infer patient's past, current, or future health state from noisy observations, e.g. heart rate or glucose levels
- Approach taken varies depending on:
 - Is labeled data available?
 - Do we have a good mechanistic/statistical model?
 - How much training data is there?

Physiological time-series

Fig. 4. Probes used to collect vital signs data from an infant in intensive care.
1) Three-lead ECG, 2) arterial line (connected to blood pressure transducer),
3) pulse oximeter, 4) core temperature probe (underneath shoulder blades), 5) peripheral temperature probe, 6) transcutaneous probe.

(Quinn et al., TPAMI 2008)

Heart rate dynamics

(Quinn et al., TPAMI 2008)

Confounded by interventions & measurement errors

(Quinn et al., TPAMI 2008)

Can we identify the artifactual processes?

- Once identified, can remove for use in downstream predictive tasks (must deal with missing data)
- Can help mitigate alarm fatigue by not alerting the clinicians when unnecessary
- More broadly, can we maintain beliefs about the true physiological values of a patient?

(Switching) linear dynamical systems

 Conditioned on s_t, linear Gaussian statespace models (Kalman filters):

$$\begin{aligned} \mathbf{x}_t &\sim & \mathcal{N}\left(\mathbf{A}^{(s_t)}\mathbf{x}_{t-1} + \mathbf{d}^{(s_t)}, \mathbf{Q}^{(s_t)}\right) \\ \mathbf{y}_t &\sim & \mathcal{N}\left(\mathbf{C}^{(s_t)}\mathbf{x}_t, \mathbf{R}^{(s_t)}\right) \end{aligned}$$

(Switching) linear dynamical systems

• Full model:

- Assume some labeled training data {s,y}
- True state x assumed to never be observed
- Parameterization for x depends on states s
- Learn using expectation maximization

Outline of today's class

- 1. State space models for physiological condition modeling
- 2. Physiological assessment score for preterm infants
- 3. RNNs with missing values (on MIMIC)
- 4. CNNs for predicting disease onsets from longitudinal lab tests
- 5. Project discussion

Example of risk stratification: predicting morbidity in preterm newborns

Saria et al., Science Translational Medicine 2010

Measuring heart rate variability

(Saria et al., Science Translational Medicine 2010)

Learning algorithm / model

 Logistic regression used to predict whether baby will be "high morbidity" (HM):

$$P(\mathrm{HM}|v_1, v_2, ..., v_n) = \left(1 + \exp\left(b + w_0^* c + \sum_{i=1}^n w_i^* f(v_i)\right)\right)^{-1}$$

- Features computed using 3 hours of data and nonlinear Bayesian model:
 - Estimated P(v_i | C) for each class of patient C={HM or LM}) using parametric models such as exponential, Weibull, lognormal, gamma
 - Use log odds ratio of observed value as feature if observed, 0 otherwise:

 $\log P(v_i | \text{HM}) / P(v_i | \text{LM})$

Assumes data missing at random

Feature importance

Outline of today's class

- 1. State space models for physiological condition modeling
- 2. Physiological assessment score for preterm infants
- 3. RNNs with missing values (on MIMIC)
- 4. CNNs for predicting disease onsets from longitudinal lab tests
- 5. Project discussion

- Let $\mathbf{x}_t \in \mathbb{R}^d$ denote the patient's data at time t
- By the chain rule, any distribution can be factorized as: $p(\mathbf{x}_1, \dots, \mathbf{x}_T) = \prod_{t=1}^T p(\mathbf{x}_t \mid \mathbf{x}_1, \dots, \mathbf{x}_{t-1})$
- Train a neural net that composes history to predict next time step:

$$g(\mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}) \in \mathbb{R}^{k} : \text{composition function}$$
$$\mathbf{w}_{i} \in \mathbb{R}^{k}, \quad b^{i} \in \mathbb{R} : \text{parameters}_{i} = 1, \dots, d$$
$$p(x_{t}^{i} = 1 \mid \mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}) = \frac{e^{\mathbf{w}^{i} \cdot g(\mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}) + b^{i}}}{1 + e^{\mathbf{w}^{i} \cdot g(\mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}) + b^{i}}}$$
$$= \text{logistic}(\mathbf{w}^{i} \cdot g(\mathbf{x}_{1}, \dots, \mathbf{x}_{t-1}) + b^{i})$$

Recurrent neural networks (RNNs)

Maintain a hidden state vector \mathbf{h}_t that is recursively calculated

RNN language models widely used in natural language processing: state-of-the-art performance for speech recognition and machine translation

Recurrent neural networks (RNNs)

Maintain a hidden state vector \mathbf{h}_{t} that is recursively calculated

Significant interest in using RNNs for disease progression modeling:

- Doctor AI, Choi et al., *arXiv:1511.05942*, Nov. 2015.
- DeepCare, Pham et al., arXiv:1602.00357, Feb. 2016

RNNs versus HMMs

Equivalently, viewing the RNN as a Markov model:

Advantage: Very powerful

Disadvantages:

- Not easy to deal with missing data in x
- No ability to discover structure in \mathbf{x} can overfit if d is large
- All randomness due to exogenous factors must be captured in x observations
- Difficult (not impossible) to incorporate prior knowledge and to combine as part of a more complex model

RNNs versus HMMs

Equivalently, viewing the RNN as a Markov model:

Can't remove the edges from **x** to **h** in this model, because it becomes useless (due to **h** transitions being deterministic):

$$p(\mathbf{x}_t \mid \mathbf{x}_1, \dots, \mathbf{x}_{t-1}) = p(\mathbf{x}_t)$$

Timing matters! Measurement motifs

(Pivovarov et al., JBI 2014)

How can we exploit missingness in RNNs?

Missingness comes from various reasons.

Missingness provides rich information about patients health condition.

(Che et al., "Recurrent Neural Networks for Multivariate Time Series with Missing Values", arXiv:1606.01865,2016)

Represent and Utilize Missing Values

Two representations of missingness:

• Masking M:

Whether a variable is missing or not.

• Time Interval Δ :

How long a variable has been missing.

Decay Term γ : A flexible transformation on Δ jointly learned with deep model.

$$\gamma_t = \exp\{-ReLU(\mathbf{W}_{\gamma}\delta_t + \mathbf{b}_{\gamma})\}$$
$$x_t^d \leftarrow m_t^d x_t^d + (1 - m_t^d)\gamma_{\mathbf{x}_t}^d x_{t'}^d + (1 - m_t^d)(1 - \gamma_{\mathbf{x}_t}^d)\tilde{x}^d$$

GRU-D model

- Decay on the last observations.
- Decay on the hidden states.

(Che et al., "Recurrent Neural Networks for Multivariate Time Series with Missing Values", arXiv:1606.01865,2016)

Quantitative Evaluation

AUC score on mortality prediction						
	Models	MIMIC-III	PhysioNet			
Non- RNN	LR-forward	0.7589	0.7423			
	SVM-forward	0.7908	0.8131			
	RF-forward	0.8293	0.8183			
	LR-simple	0.7715	0.7625			
	SVM-simple	0.8146	0.8277			
	RF-simple	0.8294	0.8157			
RNN	LSTM-mean	0.8142	0.8025			
	GRU-mean	0.8192	0.8195			
	GRU-forward	0.8252	0.8162			
	GRU-simple	0.8380	0.8155			
Ours	GRU-D	0.8527	0.8424			

Qualitative Evaluation

Input decay plots of all 33 variables for mortality prediction on PhysioNet dataset

 Get a few important variables, e.g., weight, arterial pH, temperature, and respiration rate, etc.

Histograms of of hidden state decay for mortality prediction on PhysioNet dataset

• Parameters related to variables with smaller missing rate are more spread out.

Outline of today's class

- 1. State space models for physiological condition modeling
- 2. Physiological assessment score for preterm infants
- 3. RNNs with missing values (on MIMIC)
- 4. CNNs for predicting disease onsets from longitudinal lab tests
- 5. Project discussion

Multi-task prediction of disease onsets from longitudinal lab tests

Goal:

- Early diagnosis of diseases for people who *do not* already have the disease.
- Going toward raw biological signals (i.e. lab measurements) and learning rich representations directly from the raw input

Cohort

298,000 individuals, with at least once a year lab measurement for 3 consecutive years included

- Input: Comprehensive lab panel + cholesterol (18 labs)
- Output: 133 conditions.
- Exclusion Per Disease: Anyone with even 1 measurement prior to start of prediction window
 - Done via masking the gradients in SGD process for excluded patients per task.
- Randomly Split to train(100K), validate(100K) and test(98k)set

CNN-1: Convolution over Labs then Time

CNN-2: Multi-resolution Convolution over Time

LSTM for Sequence Embedding

Lab name

Creatinine Urea nitrogen Potassium Glucose Alanine aminotransferase Aspartate aminotransferase Protein Albumin Cholesterol Triglyceride Cholesterol.in LDL Calcium Sodium Chloride Carbon dioxide Urea nitrogen/Creatinine Bilirubin Albumin/Globulin

Results

Goal: predict new onset of diseases 3 months in advance

ICD9 Code and disease description	\mathbf{LR}	LSTM	CNN1	CNN2	\mathbf{Ens}	Pos
585.6 End stage renal disease	0.886	0.917	0.910	0.916	0.920	837
285.21 Anemia in chr kidney dis	0.849	0.866	0.868	0.880	0.879	1598
585.3 Chr kidney dis stage III	0.846	0.851	0.857	0.858	0.864	2685
584.9 Acute kidney failure NOS	0.805	0.820	0.828	0.831	0.835	3039
250.01 DMI wo cmp nt st uncntrl	0.822	0.813	0.819	0.825	0.829	1522
250.02 DMII wo cmp uncntrld	0.814	0.819	0.814	0.821	0.828	3519
593.9 Renal and ureteral dis NOS	0.757	0.794	0.784	0.792	0.798	2111
428.0 CHF NOS	0.739	0.784	0.786	0.783	0.792	3479
V053 Need prphyl vc vrl hepat	0.731	0.762	0.752	0.780	0.777	862
790.93 Elvtd prstate spcf antgn	0.666	0.758	0.761	0.768	0.772	1477
185 Malign neopl prostate	0.627	0.757	0.751	0.761	0.768	761
274.9 Gout NOS	0.746	0.761	0.764	0.757	0.767	1529
362.52 Exudative macular degen	0.687	0.752	0.750	0.757	0.765	538

AUC sorted by maximum AUC achieved by any of the models

Observations

- Rich representation learning improves prediction quality of weaker tasks in the multi-task settings
- Most gains are on tasks where the predictive features are NOT directly included in the input already
 - Confirmed by the case study of chronic kidney disease progression, and our most-improved outcomes
- Different representation learning methods (CNN1, CNN2, LSTM) show similar improvements.
- Ensemble of best models *always* further improves results

A Model for Imputation On Correlated Biomarkers

- Imputation model based on structured multivariate kernel regression/smoothing^[1]
- Formulated as unsupervised learning method

$$\mathbf{E}_{x \sim P(x|t=t_{new})}[x] = \frac{(K * \bar{X}_{train})(t_{new})}{(K * I(\bar{X}_{train} : observed))(t_{new})}$$
Mask and impute, given the rest
of data points
$$(K * X) = (K * X)$$

$$(K * X) = (K * X)$$

$$(K * X) = (K * X)$$

$$(K * X) = (K)$$

$$(K * I(X:obs)) = (K)$$

$$(K * I(X:obs)) = (K)$$

$$(K * I(X:obs)) = (K)$$

(Razavian & Sontag, arXiv:1511.07938, 2015)

Data: 30K Individuals from the original training set.

Dataset split equally between train, test and validate set.

Loss: MSE. Train and evaluate only on (lab, person) with more than 1 observation.

Outline of today's class

- 1. State space models for physiological condition modeling
- 2. Physiological assessment score for preterm infants
- 3. RNNs with missing values (on MIMIC)
- 4. CNNs for predicting disease onsets from longitudinal lab tests
- 5. Project discussion

#5: Disease progression in multiple myeloma

Clinical mentor:

Nikhil Munshi, MD Dana-Farber Cancer Institute Professor of Medicine, Harvard Medical School

- Blood cancer, affecting 0.8% of US population at some point in their lifetime. 5 year survival rate is 49%
- Major advances in treatment, with 10+ new drugs on the market, more in clinical trials
- Project goal: predict patient survival and time to disease progression
- Data for ~1000 individuals:
 - Cytogenetics, mutations, gene expression
 - Biomarker levels across time (eg immunoglobulin levels)
 - Clinical outcomes including disease status, time to response, treatment response
 - Adverse events (eg anemia, bone pain, renal failure...)
 - Quality of life measures (e.g. appetite loss, fatigue) and symptoms
 - Treatment therapies including combination treatments

#5: Disease progression in multiple myeloma

Clinical mentor:

Nikhil Munshi, MD Dana-Farber Cancer Institute Professor of Medicine, Harvard Medical School

Data for multiple myeloma project

$\leftrightarrow \Rightarrow c$	i support.themmrf.org	site/PageNavigator/Rese	archer%20Gateway/Res	earcherGatewayNonPr	ofitRegistration.html
MMRF Research Gateway					
	Non-Profit Institution User Regis	strant Application			
	* Indicates a required field				
	User Information			_	
	*First Name:	*Last Name:			
	*Institution/Entity:	*Department/Group:			
	*Title:				
	Contact Information			_	C
	*Email:	*Confirm Email:			J
	*Address Line 1:	Address Line 2:			
	*City:	*State:	Please select response \$		
	*Zip:	*Country:			
	*Phone (Work):	*Phone (Cell):			Т
	MMRF Research Gateway Content				·
	Available Now: 2013 Data Sets: Inte	rim Analysis 3.0			n
	 Includes Clinical Data aggregat consists of standard of care bar immunophenotyping and cytog 	i.	11		
	 Includes Genomic Sequence D Genome, Whole Exome, Transc 	ata aggregated from baseline bone marro riptome/RNA)		41	

Available 2014: Interim Analysis 4.0

- Will include Clinical Data on ~300 patients
- · Will include Genomic Sequence data on ~100 patients

Nature of Request

*Please indicate the specific question(s) or area(s) of information you are interested in addressing with the MMRF Researcher Gateway data:

(Maximum response 255 chars, approx. 5 rows of text)

*Please indicate the specific data components within the MMRF Researcher Gateway that you would like to access $_{\odot}$ Clinical Data only $_{\odot}$ Genomic Sequence Data only

Both Clinical and Genomic Sequence data together

*I Accept the Terms of Use Ves

Simple form –

Takes just a few minutes to request the data, and no training needed

#6: Machine learning on medical images

Clinical mentor:

Quanzheng Li, Ph.D. Massachusetts General Hospital, Department of Radiology Center for Clinical Data Science Associate Professor, Harvard Medical School

- Led one of the top teams in Camelyon 2016 competition on cancer metastasis detection (pathology)
- Could use publicly available data and propose your own project in consultation with him

One project he proposed:

Study transfer learning using chest CT images from patients in two cohorts, emphysema and lung cancer