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Outline of today’s class

1. State space models for physiological 

condition modeling

2. Physiological assessment score for 
preterm infants

3. RNNs with missing values (on MIMIC)
4. CNNs for predicting disease onsets from 

longitudinal lab tests
5. Project discussion



Labs and physiological time-series
• Typical use cases:

1. Risk stratification, e.g. predict clinical deterioration, or 
diagnosis

2. Infer patient’s past, current, or future health state 
from noisy observations, e.g. heart rate or glucose 
levels

• Approach taken varies depending on:
• Is labeled data available?
• Do we have a good mechanistic/statistical model?
• How much training data is there?



Physiological time-series

(Quinn et al., TPAMI 2008)
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the quantity not being observed. We can effectively calculate these
on the fly, by checking at each step in the inference routine for
the presence of a zero in each measurement. When this occurs,
the corresponding column of C

(i) is set to zero for all i.
We can also exploit the knowledge that the factor settings in

a given application might tend to change slowly relative to the
frequency of the measurements. Within the factorial model, it
is possible to constrain the transitions so that only one factor
can change its setting at each time step. Using the Gaussian
sum approximation, this speeds up inference from order O(K2

)

per time step to O(K log K). We use this approximation in the
experiments described in section VI.

V. APPLICATION TO NEONATAL CONDITION MONITORING

We now turn our attention to the application of monitoring
the condition of a premature baby receiving intensive care.
Babies born three or four months prematurely in their first week
post partum are kept in a closely regulated environment, with
measurements of the heart rate, blood pressure, temperature and
so on taken every second. An experienced clinician can make
inferences about a baby’s condition based on these signals, though
this task is complicated by the fact that the observations depend
not just on the state of a baby’s physiology but also on the
operation of the monitoring equipment. There is observation noise
due to inaccuracies in the probes, and some operations can cause
the measurements to become corrupted with artifact.

Much of the time babies can be expected to be in a “normal”
state, where a degree of homeostasis is maintained and mea-
surements are stable. In specific situations, characteristic patterns
can appear which indicate particular conditions or pathologies.
Some patterns are common and can be easily recognised, whereas
at other times there might be periods of unusual physiological
variation to which it is difficult to attribute a cause.

In this section, we first review previous work in intensive
care unit (ICU) monitoring, then summarise the measurement
channels which are to be analysed in this particular application.
Constructing the model involves a combination of learning and
domain knowledge. We first characterise the normal dynamics of
the measurements, and then learn factor dynamics one by one to
obtain the full factorial model.

A. Relation to previous work on ICU monitoring

We briefly review some relevant work in the specific area of
intensive care unit monitoring. This work broadly fits into two
categories. One approach is based on using domain knowledge
to formulate high-level representations of particular patterns or
situations, then to find suitable abstractions of the data in order
to apply some matching rules. In this type of work, the goal is to
describe what is happening, and sometimes to suggest what to do
next; an interpretation is put on the data. Different schemes for
heuristic description of patterns have been used, see for example
[30]–[32].

By contrast, another body of work is based on making infer-
ences of a statistical nature from monitoring data using time series
analysis techniques. The goal in this case is to use the method-
ology of time series analysis to obtain informative descriptions
of the data, which offer insight into the underlying processes.
Notably, a switching linear dynamical system was used in [9] in
order to identify statistically significant changes in liver function.

Fig. 4. Probes used to collect vital signs data from an infant in intensive care.
1) Three-lead ECG, 2) arterial line (connected to blood pressure transducer),
3) pulse oximeter, 4) core temperature probe (underneath shoulder blades), 5)
peripheral temperature probe, 6) transcutaneous probe.

Parametric models such as AR processes have been used to
identify significant changes (e.g. level changes or slope changes)
in physiological dynamics [33], [34]. Other work in this category
has looked at finding segmentations of physiological monitoring
data, e.g. finding segments which are approximately linear [35],
[36].

The first of these bodies of work uses expert knowledge, but
captures it using a series of ad-hoc frameworks. The second uses
established statistical techniques, but in general without incorpo-
rating the same level of expert insight and interpretation. The
work described in this paper is motivated by the idea that these
two approaches are not mutually exclusive, and uses extensive
knowledge engineering within a principled (probabilistic) time
series analysis framework.

B. Measurement channels

We now briefly describe the observations which are to be used
in this application. A number of probes, illustrated in Figure
4, continuously collect physiological data from each baby. The
resulting data channels are listed in Table I. Heart rate is obtained
either from the ECG unit or blood pressure sensor. The latter
also derives systolic and diastolic blood pressure measurements
(the arterial pressure when the heart is contracting and relax-
ing, respectively). A transcutaneous probe, sited on the chest,
measures the partial pressures of oxygen (TcPO

2

) and carbon
dioxide (TcPCO

2

) in the blood1. A pulse oximeter, attached to
the foot, measures the saturation of oxygen in arterial blood—
a related but different quantity to transcutaneous O

2

. The core
temperature and peripheral temperature are measured by two
probes, one of which is placed under the baby’s back (or under
the chest if the baby is prone) and the other attached to a foot. In
addition, environmental measurements (ambient temperature and
humidity) are collected directly from the incubator. The probes
used to collect these measurements are illustrated in Figure 4.
All these measurements are taken once per second. All the data
channels are applied without preprocessing to the model, with
the exception of incubator humidity. It is necessary to apply a
form of smoothing to this data channel because of measurement
quantisation; the measurements change gradually relative to the
measurement accuracy in this case, resulting in a “stepped” signal
which causes problems during learning and inference.

1Various gases are dissolved in the bloodstream, and the partial pressure
is used to quantify the amount of each. It is the amount of pressure that a
particular gas would exert on a container if it was present without the other
gases.
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TABLE I
PHYSIOLOGICAL MEASUREMENT CHANNELS

Channel name Label

Core body temperature (�C) Core temp.
Diastolic blood pressure (mmHg) Dia. Bp

Heart rate (bpm) HR
Peripheral body temperature (�C) Periph. temp.
Saturation of oxygen in pulse (%) SpO2
Systolic blood pressure (mmHg) Sys. Bp

Transcutaneous partial pressure of CO2 (kPa) TcPCO2
Transcutaneous partial pressure of O2 (kPa) TcPO2

C. Learning normal dynamics

In training the FSLDS model for this application, we first learn
the “normal” dynamics for a baby. Much of the time, infants in
intensive care are in a stable condition. Because infants with a low
gestational age are usually asleep and motionless, there tends to be
low variability in their vital signs when in a stable condition. The
physiological systems underlying the observation channels are
too complicated to model explicitly, being governed by complex
interactions between a number of different sub-systems including
the central nervous system. Instead, the approach adopted here
is to try to find relatively simple models that are statistically
compelling.

The approach used here for fitting linear Gaussian state-space
models to each observation channel is first illustrated with heart
rate observations, which are generally the least stable and most
difficult to model of the observed channels. We then go on to
show how this approach is adapted to model the other observed
channels. Our resulting joint model is univariate in each observa-
tion channel, so that A and Q have a block diagonal structure.
This makes it easy to add or remove channels from the overall
model, and to specify the dependence of the state and channel
dynamics on various factors.

1) Normal heart rate dynamics: Looking at examples of
normal heart rate dynamics as in the top left and right panels
of Figure 5, it can be observed first of all that the measurements
tend to fluctuate around a slowly drifting baseline. This motivates
the use of a model with two hidden components: the signal xt, and
the baseline bt. These components are therefore used to represent
the true heart rate, without observation noise. The dynamics can
be formulated using autoregressive (AR) processes, such that an
AR(p

1

) signal varies around an AR(p
2

) baseline, as given by the
following equations:

xt � bt ⇠ N

 p1
X

k=1

↵k(xt�k � bt�k), ⌘
1

!

, (11)

bt ⇠ N

 p2
X

k=1

�kbt�k, ⌘
2

!

, (12)

where ⌘
1

, ⌘
2

are noise variances. For example, an AR(2) signal
with AR(2) baseline has the following state-space representation:
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Fig. 5. In these two examples, HR measurements (in the top left and top
right panels) are varying quickly within normal ranges. The estimates of the
underlying signal (bottom left and bottom right panels) are split into a smooth
baseline process and zero-mean high frequency component.
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, C = [1 0 0 0] . (14)

It is straightforward to adjust this construction for different values
of p

1

and p
2

. The measurements are therefore generally taken
to be made up of a baseline with low frequency components
and a signal with high frequency components. We begin training
this model with a heuristic initialisation, in which we take
sequences of training data and remove high frequency components
by applying a symmetric 300-point moving average filter. The
resulting signal is taken to be the low frequency baseline. The
residual between the original sequences and the moving-averaged
sequences are taken to contain both stationary high frequency
hemodynamics as well as measurement noise. These two signals
can be analysed according to standard methods and modelled as
AR or integrated AR processes (specific cases of autoregressive
integrated moving average (ARIMA) processes [37]) of arbitrary
order. Heart rate sequences were found to be well modelled by
an AR(2) signal varying around an ARIMA(1,1,0) baseline. An
ARIMA model is a compelling choice for the baseline, because
with a low noise term it produces a smooth drift2. Having found
this initial setting of the model parameters, EM updates are then
applied [17]. This has been found to be particularly useful for
refining the estimates of the noise terms Q and R.

Examples of the heart rate model being applied as a Kalman
filter to heart rate sequences are shown in Figure 5. The top panels
show sequences of noisy heart rate observations, and the lower
panel shows estimates of the high frequency and low frequency
components of the heart rate.

2) Other channels : Most of the remaining observation chan-
nels are modelled according to the same principle. Heart rate,

2The ARIMA(1,1,0) model has the form (Xt � �Xt�1) = ↵1(Xt�1 �
�Xt�2) + Zt where � = 1 and Zt ⇠ N(0, �2

Z). This can be expressed in
un-differenced form as a non-stationary AR(2) model. In our implementation
we set � = 0.999 and with |↵1| < 1 we obtain a stable AR(2) process, which
helps to avoid problems with numerical instability. This slight damping makes
the baseline mean-reverting, so that the resulting signal is stationary. This has
desirable convergence properties for dropout modelling.

(Quinn et al., TPAMI 2008)



Confounded by interventions & 
measurement errors

(Quinn et al., TPAMI 2008)
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Fig. 6. Inferred distributions of switch settings for two situations involving recalibration of the transcutaneous probe. BS denotes a blood sample, TR denotes
a recalibration, and TD denotes a core temperature probe disconnection. In panel (a) the recalibration is preceeded by a dropout, followed by a blood sample.
Diastolic BP is shown as a dashed line which lies below the systolic BP plot. Transcutaneous readings drop out at around t = 1200 before the recalibration.
In panel (b), the solid line shows the core temperature and the dashed line shows incubator temperature. A core temperature probe disconnection is identified
correctly, as well as the recalibration. Temperature measurements can occasionally drop below the incubator temperature if the probe is near to the portals;
this is accounted for in the model by the system noise term Q.
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Fig. 7. Inferred distributions of switch settings for two further situations in which there are effects due to multiple known factors. In panel (a) there are
incidences of bradycardia, after which the incubator is entered. There is disturbance of heart rate during the period of handling, which is correctly taken to
be associated with the handling and not an example of spontaneous bradycardia. In panel (b), bradycardia and blood samples are correctly inferred. During
the blood sample, heart rate measurements (supplied by the blood pressure sensor) are interrupted.
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Can we identify the artifactual processes?

• Once identified, can remove for use in 
downstream predictive tasks (must deal 
with missing data)

• Can help mitigate alarm fatigue by not 
alerting the clinicians when unnecessary

• More broadly, can we maintain beliefs 
about the true physiological values of a 
patient?



(Switching) linear dynamical systems

• Conditioned on st, linear Gaussian state-
space models (Kalman filters):

2

II. MODEL DESCRIPTION

We first review the SLDS before generalising to the factorial
case. In such models, the hidden switch setting st affects the
hidden continuous state xt and the observations yt. Conditional
on a particular switch setting, the model is equivalent to a linear
Gaussian state-space model (Kalman filter). The switch setting
evolves according to the transition probabilities p(st|st�1

), and
for a given setting of st the hidden continuous state and the
observations are related by:

xt ⇠ N

“

A

(s
t

)

xt�1

+ d

(s
t

),Q(s
t

)

”

(1)

yt ⇠ N

“

C

(s
t

)

xt,R
(s

t

)

”

(2)

where x 2 Rd
x and y 2 Rd

y . Here A

(s
t

) is a square system
matrix, d

(s
t

) is a drift vector, C

(s
t

) is the state-observations
matrix, and Q

(s
t

) and R

(s
t

) are noise covariance matrices.
Note that in this formulation, all dynamical parameters can be
switched between regimes. Similar models referred to in the above
literature sometimes switch only the state dynamics {A,Q}, or
the observation dynamics {C,R}.

It is possible to factorise the switch variable, so that M factors
f

(1)

t . . . f
(M)

t affect the observations yt. The factor f (m) can take
on L(m) different values. The state space is the cross product of
the factor variables,

st = f
(1)

t ⌦ . . .⌦ f
(M)

t (3)

with K =

QM
m=1

L(m) being the number of settings that st can
take on. The value of f

(m)

t depends on f
(m)

t�1

. The factors are a
priori independent, so that

p(st|st�1

) =

M
Y

m=1

p
“

f
(m)

t |f
(m)

t�1

”

. (4)

Notice that the factors are not, in general, a posteriori indepen-
dent. The joint distribution of the model is

p(s
1:T ,x

1:T ,y
1:T ) = p(s

1

)p(x

1

)p(y

1

|x

1

, s
1

) .

T
Y

t=2

p(st|st�1

)p(xt|xt�1

, st)p(yt|xt, st)
(5)

where s
1:T denotes the sequence s

1

, s
2

, . . . , sT and similarly for
x

1:T and y

1:T . p(xt|xt�1

, st) is defined in eq (1), p(yt|xt, st)

in eq (2) and p(st|st�1

) in eq (4). By considering the factored
nature of the switch setting, we have an observation term of the
form p(yt|xt, f

(1)

t , . . . , f
(M)

t ). This can be parameterised in dif-
ferent ways. In this work, we specify conditional independencies
between particular components of the observation yt given the
factor settings. This is explained further in sections II-B and V-E.
Although we make use of prior factored dynamics in eq (4) in
this work, it is very simple to generalize the model so that this
no longer holds. The inference algorithms described in section IV
can still be applied. However, the separate factors are crucial in
structuring the system dynamics and observations model.

A. Learning
In a condition monitoring problem, it is assumed that we are

able to interpret at least some of the regimes in the data; otherwise
we would be less likely to have an interest in monitoring them.
We can therefore usually expect to obtain some labelled training
data {y

1:T , s
1:T }. When available, this data greatly simplifies

the learning process, because determining the switch setting in
the (F)SLDS makes the model equivalent to a linear dynamical
system, therefore making the process of parameter estimation a
standard system identification problem.

Given training data with known switch settings, the learning
process is therefore broken down into the training of a set of LDS
models—one per switch setting. We might choose a particular
parameterisation, such as an autoregressive (AR) model of order
p hidden by observation noise and fit parameters accordingly [16].
Expectation maximisation can be useful in this setting to improve
parameter settings given an initialisation [17]. We describe partic-
ular methods used for parameter estimation in the physiological
monitoring application in section V which incorporate both of
these ideas. Note that if labellings for the training data were not
available, it would still be possible to learn the full switching
model directly using EM [11] or variational learning [18].

When labelled training data is available, estimates of the factor
transition probabilities are given by

P (f
(m)

t = j|f
(m)

t�1

= i) =

nij + ⇣
PM

k=1

nik + ⇣
, (6)

where nij is the number of transitions from factor setting i to
setting j in the training data. The constant terms ⇣ (set to ⇣ = 1

in the experiments described later in the paper) are added to stop
any of the transition probabilities being zero or very small.

Some verification of the learned model is possible by clamping
the switch setting to a certain value and studying the resulting
LDS. One simple but effective test is to draw a sample sequence
and check by eye whether it resembles the dynamics of training
data which is known to follow the same regime. Some insight
into the quality of the parameter settings can also be gained by
considering estimation of the hidden state x in the LDS. The
Kalman filter equations yield both an innovation sequence, ˜

y

1:T

(the difference between the predicted and actual observations),
and a specification of the covariance of the innovations under ideal
conditions. An illuminating test is therefore to compare the actual
and ideal properties of the innovation sequence when applied to
training data. In particular, the innovations ˜

yt should come from
a Gaussian distribution with zero mean and a specific covariance,
and should be uncorrelated in time. We find in practice that such
tests are highly significant when training (F)SLDS models for
condition monitoring. For more details about verification in linear
dynamical systems, see [19, §5.5].

B. Learning the factorial model
The previous discussion assumes that we train the model con-

ditioned on each switch setting independently, and then combine
parameters. Where there are many factors this implies a great
quantity of training data is needed. In practice, however, this
requirement can be mitigated.

Where there are several measurement channels it may be found
that some factors “overwrite” others. For example, if we are moni-
toring the physiological condition of a patient, we might have two
factors: heart problem and probe disconnection. If there is a heart
problem and the probe is disconnected, then we would see the
same measurements as though only the probe was disconnected
(that is, a sequence of zeros). It is often possible to specify
an ordering of factors such that some overwrite measurement
channels of others in this way. The significance of this is that
examples of every combination of factors do not need to be found

!"# !$# !%# !&# !'# !(#
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(Switching) linear dynamical systems

• Full model:

compare its graphical structure and inference methods to
those of the FSLDS, and briefly describe related work. In
Section 2 we describe our experiments and provide results
for the comparison between the DSLDS and the FSLDS.
Finally, in Section 3 we conclude with general remarks
about our proposed model and suggestions for future work.

1 MODEL DESCRIPTION

The graphical model of the FSLDS is depicted in Figure 1
(top). It operates on three different sets of variables: The
observed variables, yt 2 Rd

y represent the patient’s vital
signs obtained from the monitoring devices at time t, which
act as the input to our model. The continuous latent vari-
ables, xt 2 Rd

x , track the evolution of the dynamics of a
patient’s underlying physiology. The discrete variable, st,
represents the switch setting or regime which the patient is
currently in (e.g. stable, a blood sample is being taken etc.
). The switch variable can be factorised according to the
cross-product of M factors, so that st = f

1
t ⌦f

2
t ⌦...⌦f

M
t .

Each factor variable, fm
t , is usually a binary vector indicat-

ing the presence or absence of a factor, but in general it
can take on L

(m) different values and K =

QM
m=1 L

(m)

is the total number of possible configurations of the switch
variable, st. Also, st depends explicitly on the previous
time step, so that p(st|st�1) =

QM
m=1 p(f

m
t |fm

t�1). Condi-
tioned on a particular regime, the FSLDS is equivalent to an
LDS. The FSLDS can be seen then as a collection of LDS’s,
where each LDS models the dynamics of a patient’s under-
lying physiology under a particular regime, and can also be
used to generate a patient’s observed vital signs. An LDS
provides a generative framework for modelling our belief
over the state space, given observations.

We can alternatively adopt a discriminative view. We start
by modelling p(st|yt�l:t+r) with a discriminative classi-
fier, where (features of) observations from the previous l

and future r time steps affect the belief of the model about
st. The inclusion of r frames of future context is analogous
to fixed-lag smoothing in an FSLDS (see e.g. Särkkä, 2013,
sec. 10.5). We note that inclusion of future observations in
the conditioning set means that the DSLDS will operate
with a delay of r seconds, since an output of the model
at time t can be produced only after time t + r. Provided
that r is small enough (r 10 in experiments), this delay
is negligible compared to the increase in performance. The
LDS can also be regarded from a similarly discriminative
viewpoint which allows us to model p(xt|xt�1,yt). This is
similar to the Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000) with the difference that the latent
variable is continuous rather than discrete. The main ad-
vantage of this discriminative view is that it allows for a
rich number of (potentially highly correlated) features to
be used without having to explicitly model their distribu-
tion or the interactions between them, as is the case in a
generative model. A combination of these two discrimina-

tive viewpoints gives rise to the DSLDS graphical model in
Figure 1 (bottom). The DSLDS, conditioned on st, can be
seen then as a collection of MEMM’s, where each MEMM
in the DSLDS plays a role equivalent to that of each LDS
in the FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1)p(x1|s1,y1)⇥
TY

t=2

p(st|yt�l:t+r)p(xt|xt�1, st,yt) . (1)

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

Figure 1: Graphical model of the FSLDS (top) and the
DSLDS (bottom). The state-of-health and underlying phys-
iological values of a patient are represented by st and xt

respectively. The shaded nodes correspond to the observed
physiological values, yt. Note that in the case of the
DSLDS the conditional probability p(st|yt�l:t+r) is mod-
elled directly.

The simplest assumption we can make for the DSLDS is
that p(st|yt�l:t+r) factorises, so that

p(st|yt�l:t+r) =

MY

m=1

p(f

(m)
t |yt�l:t+r) . (2)

However, one could use a structured output model to pre-
dict the joint distribution of different factors.

State

Observations

Confounding

factors (e.g.

artifactual events)



Learning SLDS models

• Assume some labeled training data {s,y}
• True state x assumed to never be observed
• Parameterization for x depends on states s
• Learn using expectation maximization

compare its graphical structure and inference methods to
those of the FSLDS, and briefly describe related work. In
Section 2 we describe our experiments and provide results
for the comparison between the DSLDS and the FSLDS.
Finally, in Section 3 we conclude with general remarks
about our proposed model and suggestions for future work.

1 MODEL DESCRIPTION

The graphical model of the FSLDS is depicted in Figure 1
(top). It operates on three different sets of variables: The
observed variables, yt 2 Rd

y represent the patient’s vital
signs obtained from the monitoring devices at time t, which
act as the input to our model. The continuous latent vari-
ables, xt 2 Rd

x , track the evolution of the dynamics of a
patient’s underlying physiology. The discrete variable, st,
represents the switch setting or regime which the patient is
currently in (e.g. stable, a blood sample is being taken etc.
). The switch variable can be factorised according to the
cross-product of M factors, so that st = f

1
t ⌦f

2
t ⌦...⌦f

M
t .

Each factor variable, fm
t , is usually a binary vector indicat-

ing the presence or absence of a factor, but in general it
can take on L

(m) different values and K =

QM
m=1 L

(m)

is the total number of possible configurations of the switch
variable, st. Also, st depends explicitly on the previous
time step, so that p(st|st�1) =

QM
m=1 p(f

m
t |fm

t�1). Condi-
tioned on a particular regime, the FSLDS is equivalent to an
LDS. The FSLDS can be seen then as a collection of LDS’s,
where each LDS models the dynamics of a patient’s under-
lying physiology under a particular regime, and can also be
used to generate a patient’s observed vital signs. An LDS
provides a generative framework for modelling our belief
over the state space, given observations.

We can alternatively adopt a discriminative view. We start
by modelling p(st|yt�l:t+r) with a discriminative classi-
fier, where (features of) observations from the previous l

and future r time steps affect the belief of the model about
st. The inclusion of r frames of future context is analogous
to fixed-lag smoothing in an FSLDS (see e.g. Särkkä, 2013,
sec. 10.5). We note that inclusion of future observations in
the conditioning set means that the DSLDS will operate
with a delay of r seconds, since an output of the model
at time t can be produced only after time t + r. Provided
that r is small enough (r 10 in experiments), this delay
is negligible compared to the increase in performance. The
LDS can also be regarded from a similarly discriminative
viewpoint which allows us to model p(xt|xt�1,yt). This is
similar to the Maximum Entropy Markov Model (MEMM)
(McCallum et al., 2000) with the difference that the latent
variable is continuous rather than discrete. The main ad-
vantage of this discriminative view is that it allows for a
rich number of (potentially highly correlated) features to
be used without having to explicitly model their distribu-
tion or the interactions between them, as is the case in a
generative model. A combination of these two discrimina-

tive viewpoints gives rise to the DSLDS graphical model in
Figure 1 (bottom). The DSLDS, conditioned on st, can be
seen then as a collection of MEMM’s, where each MEMM
in the DSLDS plays a role equivalent to that of each LDS
in the FSLDS.

The DSLDS can be defined as

p(s,x|y) = p(s1|y1)p(x1|s1,y1)⇥
TY

t=2

p(st|yt�l:t+r)p(xt|xt�1, st,yt) . (1)

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

st�1 st st+1

xt�1 xt xt+1

yt�1 yt yt+1

Figure 1: Graphical model of the FSLDS (top) and the
DSLDS (bottom). The state-of-health and underlying phys-
iological values of a patient are represented by st and xt

respectively. The shaded nodes correspond to the observed
physiological values, yt. Note that in the case of the
DSLDS the conditional probability p(st|yt�l:t+r) is mod-
elled directly.

The simplest assumption we can make for the DSLDS is
that p(st|yt�l:t+r) factorises, so that

p(st|yt�l:t+r) =

MY

m=1

p(f

(m)
t |yt�l:t+r) . (2)

However, one could use a structured output model to pre-
dict the joint distribution of different factors.

State

Observations

Confounding

factors (e.g.

artifactual events)
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Example of risk stratification: predicting 
morbidity in preterm newborns

Saria et al.,
Science Translational 
Medicine 2010



Measuring heart rate variability

thereby removing the need for end-user expertise. When integrated
into a bedsidemonitor, the algorithmwould indicate the statistical like-
lihood that an individual patient is at high risk of major morbidities,
allowing real-time use of the PhysiScore calculation. This method of
deployment would effectively provide an automated electronic Apgar
score, with significantly higher predictive accuracy regarding neonatal
morbidity.

The PhysiScore’s ability to assess physiologic disturbances before it
can be confounded by medical intervention makes it particularly de-
scriptive of initial patient acuity; thus, it is particularly well suited as a
tool for quality assessment betweenNICUs. Identification of a patient’s
future risk of developing HM complications may be particularly useful
for decision-making in primary nurseries to make more informed de-
cisions regarding aggressive use of intensive care, need for transport to

higher levels of care, and resource allocation. Such economic, social, and
medical advantages should be evaluated in a large-scale clinical trial.

Technical considerations
Although we have a relatively small sample size, analysis methods ap-
propriate to small sample sizes (15) were used, and ROC curves were
made only for morbidities seen in >10% of our population. Ourmodel,
with its automatic factormodeling and selection, requires essentially no
parameter tuning, which greatly helps to prevent overfitting in small
samples.

In addition, our sample is from a single tertiary care center and was
limited to patients born in our institution to ensure that continuous
physiological data were available for the first hours of life. Validation
in other settings will be required.

Detection of IVH remains elusive in
the field of neonatal medicine. Previous
work reported that fractal analysis of
the original newborn heartbeat may be
an early indicator of IVH (14), but yielded
no better sensitivity than PhysiScore. It is
possible that the underlying pathophys-
iology of IVH is variable (16), particularly
in infants in whom severe IVH is the only
morbidity. Although IVH is usually asso-
ciatedwith cardiopulmonary instability, re-
cent literature suggests that there may be
genetic predisposition to isolated IVH, po-
tentially limiting the role of antecedentphys-
iological signals before large hemorrhages
(17). Thus, it is possible that the small num-
ber of infants with isolated IVH that were
not identified as high risk by PhysiScore
represents a distinct subpopulation.

Advanced computational techniques
in modern medical settings
The use of computer-based techniques to
integrate and interpret patterns in patient
data to automate morbidity prediction
has the potential to improvemedical care.
The current U.S. governmental mandate
to improve electronic health record use and
gain economic benefit from using digital
data (18) facilitates the use of computer-
based tools. Flexible Bayesian modeling
with almost no tunable parameters allows
our approach to be easily applied to a range
of different prediction tasks, allowing use
of the highly informative but underused
data obtaineddaily for thousands of acutely
ill patients.

MATERIALS AND METHODS

Ethics statement
All work was performed under protocol
8312 approved by Stanford’s Panel on

Fig. 4. Processing signal subcomponents. Differing heart rate variability in two neonates matched for
gestational age (29 weeks) and weight (1.15 ± 0.5 kg). Original and base signals are used to compute the
residual signal. Differences in variability can be appreciated between the neonate predicted to have HM
(right) versus LM (left) by PhysiScore.

Fig. 5. Distribution of residual heart rate variability (HRvarS) in all infants. Learned parametric distributions
overlaid on the data distributions for HRvarS displayed for the HM versus LM categorization.
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(Saria et al., Science Translational Medicine 2010)



• Logistic regression used to predict whether baby will be 
“high morbidity” (HM):

• Features computed using 3 hours of data and nonlinear 
Bayesian model:
• Estimated P(vi | C) for each class of patient C={HM or LM}) using 

parametric models such as exponential, Weibull, lognormal, 
gamma

• Use log odds ratio of observed value as feature if observed, 0 
otherwise:

• Assumes data missing at random

Learning algorithm / model

acute hemodynamic instability. Long-term morbidity was defined by
moderate or severe bronchopulmonary dysplasia (BPD), retinopathy
of prematurity (ROP) stage 2 or greater, intraventricular hemorrhage
(IVH) grade 3 or 4, and necrotizing enterocolitis (NEC) on the basis of
the strong association of these complications with adverse neurode-
velopmental outcome. Deathwas also included in the long-termmorbid-
ity group. Most infants in the HM category had short- and long-term
complications affecting multiple organ systems. Infants with only com-
mon problems of prematurity such asmild respiratory distress syndrome
(RDS) and patent ductus arteriosus (PDA) without major complications
were classified as LM.

Probabilistic score for illness severity
We developed a method to estimate the probability that an infant
would be in the HM category on the basis of physiological signals
recorded in the first 3 hours of life plus gestational age and birthweight.
This time period was selected for analysis because it is less likely to be
confounded by medical interventions and provides prediction early
enough in the infant’s life to be useful for planning therapeutic strategy.

First, we processed the physiological signals (heart rate, respiratory
rate, and oxygen saturation) that were recorded for all infants for the
first 3 hours after birth. Mean values plus baseline and residual varia-
bility signals (capturing both short- and long-termvariability) were cal-
culated for heart and respiratory rates.Mean oxygen saturation and the
ratio of hypoxia (oxygen saturation <85%) to normoxia over the 3-hour
span were calculated.

We then defined the probability for illness severity with a logistic
function that aggregated individual risk features as

PðHMjv1,v2,:::,vnÞ ¼ 1þ exp bþ w0*cþ ∑
n

i¼1
wi*f ðviÞ

! "! "−1

ð1Þ

wherenwas the number of risk factors and c= logP(HM)/P(LM)was the
a priori log odds ratio. The ith characteristic, vi (physiological parameter,
gestational age, orweight)was used to derive a numerical risk feature f(vi)
via nonlinear Bayesian modeling (detailed in Materials and Methods).
The score parameters b and w were learned from the training data for
use in prospective risk prediction. The parameterwi represents theweight
of the contribution of the ith characteristic to the computed probability
score, with higher weight characteristics having a greater effect.

PhysiScore is a probability score that ranges from 0 to 1, with higher
scores indicating higher morbidity. PhysiScore is calculated by inte-
grating the following 10 patient characteristics into Eq. 1: mean heart
rate, base and residual variability; mean respiratory rate, base and
residual variability; mean oxygen saturation and cumulative hypoxia
time; gestational age and birth weight. Each of these patient character-
istics carries a specific learned weight, as denoted by w in Eq. 1. Plotting

Table 2. Performance summary with AUCs.

Apgar SNAP-II SNAPPE-II CRIB PhysiScore

Predicting high morbidity 0.6978 0.8298 0.8795 0.8509 0.9151

Infection 0.7412 0.8428 0.9087 0.8956 0.9733

Cardiopulmonary 0.7198 0.8592 0.9336 0.9139 0.9828

Table 1. Baseline and disease characteristics of the study cohort. SGA,
small for gestational age; NOS, not otherwise specified.

Category

Subjects (N) 138

Birth weight (g) 1367 ± 440

Gestational age (weeks) 29.8 ± 3

Gender, female 68

Apgar score at 5 min 7 ± 3

SGA (≤5th percentile) 7

Multiple gestation

Total 46

Twins 20

Triplets 6

Respiratory distress syndrome 112

Pneumothorax 10

Bronchopulmonary dysplasia

Total 29

NOS* 2

Mild 12

Moderate 5

Severe 10

Pulmonary hemorrhage 2

Pulmonary hypertension 3

Acute hemodynamic instability 11

Retinopathy of prematurity (ROP)†

Total 25

Stage I 9

Stage II 12

Stage III 4

Intraventricular hemorrhage (IVH)‡

Total 34

Grade 1 19

Grade 2 7

Grade 3 3

Grade 4 5

Posthemorrhagic hydrocephalus 6

Culture-positive sepsis 11

Necrotizing enterocolitis

Total 8

Stage 1 2

Stage 2 4

Stage 3 2

Expired 4

*Infants with oxygen requirement at 28 days for whom oxygen requirement was not known at 36
weeks aftermenstrual age. †ROP is counted by themost severe stage in either eye during the
hospitalization. ‡IVH is counted by the most severe grade in either cerebral hemisphere by
Papile classification.
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Human Subjects. Waiver of Individual Authorization was approved
under 45 CFR 164.512(i)(2)(ii)(A),(B),(C) on the basis that the data
collection was part of routine care, no intervention or interaction with
the patients occurred, and the data were processed anonymously.

General study strategy
After enrollment, we used a subset of patients (n = 12) to develop phys-
iologic data processing methods. We combined state-of-the-art tech-
niques from machine learning to build our framework that (i) processed
these physiological parameters using nonlinear models, (ii) used regu-
larization to do automatic feature selection, and (iii) combined relevant
weights using multivariate logistic regression to produce the predictive
PhysiScore (physiological features plus birth weight and gestational
age). This framework has essentially no tunable parameters. Thus, un-
like traditional frameworks that require separate feature selection and
modeling steps followed by model testing using data, our framework
combined these steps to allow direct testing of the predictive ability of
this score on all 138 subjects by the leave-one-out method (15) to pro-
spectively identify infants at high risk of severe complications.

Study population
Inborn infants admitted to the NICU of Lucile Packard Children’s
Hospital fromMarch 2008 toMarch 2009 were eligible for enrollment.
A total of 145 preterm infants met inclusion criteria: gestational age
≤34 completed weeks, birth weight≤2000 g, and availability of cardio-
respiratory (CR) monitor data within the first 3 hours of birth. Seven in-
fants found to have major malformations were subsequently excluded.

Thirty-five neonates hadHMcomplications. Of these, 32 had long-
term morbidities (moderate or severe BPD, ROP stage 2 or greater,
grade 3 or 4 IVH, and/or NEC). Four neonates died after the first
24 hours of life. There were 103 preterm neonates with only common
problems of prematurity (RDS and/or PDA) and so were considered
LM. Five infants with a <2-day history of mechanical ventilation for
RDS, but no other early complications, were transferred before ROP
evaluation and marked as LM.

Outcome annotation
Electronic medical records, imaging studies, and laboratory values
were reviewed by pediatric nurses and verified by a physician. All sig-
nificant illnesses during the hospitalization were recorded. Morbidities
were identified with previously described criteria: BPD (19), ROP (20),
NEC (21), and IVH (22). For IVHandROP, the highest unilateral grade
or stage was recorded, respectively. Acute hemodynamic instability was
also noted: hypotension (defined as a mean arterial blood pressure less
than gestational age or poor perfusion) requiring ≥3 days of pressor
support or adrenal insufficiency requiring hydrocortisone.

Physiologic signal processing
Time series heart rate, respiratory rate, and oxygen saturation data are col-
lected from all CR monitors. Heart and respiratory rate signals are pro-
cessed to compute a base and residual signal. The base signal represents a
smoothed, long-term trend; it is computedwith amoving averagewindow
of 10min. The residual signal is obtained by taking the difference between
the original signal and the base signal; it characterizes short-term variability
most likely linked to sympathetic function (Fig. 4). The variance features
weremotivated by analysis using themodel in (23) on our preliminary set
of 12 patients. For heart and respiratory rates, we compute the base signal
mean, base signal variance, and residual signal variance. For the oxygen

saturation, we compute the mean and the ratio of the time the oxygen
saturation is below 85%.

Statistical methods
Sensitivity, specificity, AUC, and significance values (12) were com-
puted for all comparisons. All statistical analyses were performed with
software developed for this project (available for academic use upon
request.) We used the leave-one-out method for all evaluations. With
this method, predictive accuracy was evaluated for each patient sepa-
rately. For each patient, we learned themodel parameters with the data
from all other patients as the training set and evaluated predictive ac-
curacy on the held-out patient. This technique was repeated for each
subject, so that each subject’s clinical data were prospectively obtained.
This method of performance evaluation is computationally intensive
but is a well-established statistical method for measuring performance
when the sample set size is limited (15).

Nonlinear models of risk factors
To implement Eq. 1, we must determine how to integrate continuous-
valued risk factors, including the physiological measurements, into our
risk model. Several approaches exist in the literature. One common ap-
proach is to define a “normal” range for ameasurement and use a binary
indicatorwhenever themeasurement is outside that range.Although this
approach canmost easily be implemented in a clinical setting, it provides
only coarse-grained distinctions derived from extreme values. Another
approach is to predetermine a particular representation of the continuous-
valuedmeasurement, usually either the feature itself, or a quadratic or log-
arithmic transformation, as selected by an expert (24, 25).

We used a different approach based on a Bayesian modeling par-
adigm (26). This approach captures the nonlinear relationships be-
tween the risk factor and the outcome and takes into account that
the overall behavior of a factor can vary greatly between sickness cate-
gories. For each risk factor vi, we separately learned a parametricmodel
of the distribution of observed values in the training set P(vi|C) for each
class of patient C (HM and LM). The parametric model is selected and
learned with maximum-likelihood estimation (Fig. 5) from the set of
long-tailed probability distributions of exponential, Weibull, lognormal,
normal, and gamma. Specifically, for each parametric class, we fit the
maximum likelihood parameters and then select the parametric class that
provides the best (highest likelihood) fit to the data. The log odds ratio of
the risk imposed by each factor was incorporated into the model.

An important advantage of our approach is that explicit missing
data assumptions can be incorporated. When standard laboratory
results (for example, complete blood count) are not recorded, we as-
sume that they are missing at random and not correlated with out-
come. Their contribution if missing is 0 and log P(vi|HM)/P(vi|LM)
otherwise. Blood gas measurements, however, are likely obtained only
for profoundly ill patients and hence are notmissing at random. Thus, for
each measurement type i, we definemi = 1 if measurement vi is missing
andmi = 0 otherwise. We now learn the distribution P(mi|C) (the chance
that themeasurement i is missing for each patient categoryC) and P(vi|C,
mi = 0) (the distribution of the observed measurements) as described
above. The factor contribution for measurement i is computed as

f ðviÞ ¼

log PðvijHM, mi ¼ 0Þ=PðvijLM, mi ¼ 0Þ þ
log Pðmi ¼ 0jHMÞ=Pðmi ¼ 0jLMÞ mi ¼ 0

log Pðmi ¼ 1jHMÞ=ðmi ¼ 1jLMÞ mi ¼ 1 ð2Þ

8
>><

>>:
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Feature importance

blood pressure, lowest core body temperature, lowest serum pH,
multiple seizures, urine output, and FiO2/PaO2 ratio); these were re-
tained in SNAP-II. SNAPPE-II is calculated with the same data as
SNAP-II, along with the 5-min Apgar score, small for gestational
age status, and birth weight. The additional variables present in
SNAPPE-II were found to be independent risk factors for mortality
(5). None of these scores, however, discriminate morbidity risk as well
as PhysiScore, which integrates a small set of continuous physiolog-
ical measures calculated directly from standard vital sign monitors.

An intriguing aspect of our findings is that PhysiScore provides
high-accuracy predictions about morbidity risk from limited initial
data (only 3 hours), even when such outcomes manifest days or weeks
later (for example, BPD or NEC). PhysiScore gives positive weight to
loss of short-term heart rate variability, much in the way that fetal heart
rate monitoring uses loss of short-term heart rate variability to predict

fetal distress and guide deliverymanagement (13). PhysiScore addition-
ally identifies short-term respiratory variability as having high predic-
tive value, suggesting that further exploration of this factor in other
settings might be warranted. Although the precise source of variability
loss—either pre- or postnatally—is unknown, autonomic dysregula-
tion likely plays a role.Whether short-term variability loss causes mor-
bidity or is simply a marker of illness is not clear at this point.

Unlike fetal heart ratemonitoring or heart rate spectral analysis (14)
in the neonate, our approach usesmultiple physiological parameters to
improve accuracy and provide long-term predictions that extend be-
yond acute risk. Unlike biomarkers, such predictions are made with
data that are already being collected in NICUs. Patient oxygenation,
heart rate, and respiratory rate can be automatically processed to
compute a score, and a predetermined sensitivity/specificity threshold
can be used to make morbidity predictions to guide clinical actions,

Fig. 3. The significance of different physiological parameters in predict-
ing high morbidity. (A) The learned weight (wi in Eq. 1) for each phys-
iological parameter incorporated in PhysiScore; error bars indicate

variation in the weight over the different folds of the cross-validation.
(B) The nonlinear function associating the parameter with the risk of
high versus low morbidity.
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Modeling sequential data with neural 
networks
• Let               denote the patient’s data at time t
• By the chain rule, any distribution can be 
factorized as:

• Train a neural net that composes history to 
predict next time step:
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Recurrent neural networks (RNNs)
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RNN language models widely used in natural language processing:
state-of-the-art performance for speech recognition and machine 
translation

Maintain a hidden state vector ht that is recursively calculated



Recurrent neural networks (RNNs)

p(x

i
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Maintain a hidden state vector ht that is recursively calculated
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xt�1

⇤�

Significant interest in using RNNs for disease progression modeling:
• Doctor AI, Choi et al., arXiv:1511.05942, Nov. 2015.
• DeepCare, Pham et al., arXiv:1602.00357, Feb. 2016



RNNs versus HMMs

h0

• Advantage: Very powerful
• Disadvantages:

• Not easy to deal with missing data in x
• No ability to discover structure in x – can overfit if d is large
• All randomness due to exogenous factors must be captured in x

observations
• Difficult (not impossible) to incorporate prior knowledge and to 

combine as part of a more complex model

x1

Equivalently, viewing the RNN as a Markov model:

x2 x3

h2 h3 = g
�⇥

h2
x3
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h1



RNNs versus HMMs

Can’t remove the edges from x to h in this model, because it 
becomes useless (due to h transitions being deterministic):

p(xt | x1, . . . ,xt�1) = p(xt)

h0

x1

Equivalently, viewing the RNN as a Markov model:

x2 x3

h2 h3 = g
�⇥

h2
x3

⇤�
h1



Timing matters! Measurement motifs

(Pivovarov et al., JBI 2014)



How can we exploit missingness in RNNs?

(Che et al., “Recurrent Neural Networks for Multivariate Time Series with Missing 
Values”, arXiv:1606.01865, 2016)

Missing Values are Useful

Missingness comes from various reasons.

Missingness provides rich information about patients health condition.

RNN for MTS with Missing Values March 22, 2017 1 / 4



Represent and Utilize Missing Values

(Che et al., “Recurrent Neural Networks for Multivariate Time Series with Missing 
Values”, arXiv:1606.01865, 2016)

Represent and Utilize Missing Values

Two representations of missingness:

• Masking M:
Whether a variable is missing or not.

• Time Interval �:
How long a variable has been missing.

Decay Term �: A flexible transformation on � jointly learned with deep model.

�t = exp{�ReLU(W��t + b�)}

GRU-D model

• Decay on the last observations.

• Decay on the hidden states.

𝒉 ෩𝒉

𝒛

IN

OUT

𝒙 𝒎𝒓
MASK

𝜸𝒉

𝜸𝒙
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. We refer to this approach as GRU-mean.

A second approach is exploiting the temporal structure in time series. For example, we may assume
any missing value is same as its last measurement and use forward imputation (GRU-forward), i.e.,
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where t

0
< t is the last time the d-th variable was observed.

Instead of explicitly imputing missing values, the third approach simply indicates which variables are
missing and how long they have been missing as a part of input, by concatenating the measurement,
masking and time interval vectors as
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where x

(n)
t

can be either from Equation (1) or (2). We later refer to this approach as GRU-simple.

These approaches solve the missing value issue to a certain extent, However, it is known that imputing
the missing value with mean or forward imputation cannot distinguish whether missing values are
imputed or truly observed. Simply concatenating masking and time interval vectors fails to exploit
the temporal structure of missing values. Thus none of them fully utilize missingness in data to
achieve desirable performance.

2.2 GRU-D: MODEL WITH TRAINABLE DECAYS

To fundamentally address the issue of missing values in time series, we notice two important
properties of the missing values in time series, especially in health care domain: First, the value of
the missing variable tend to be close to some default value if its last observation happens a long time
ago. This property usually exists in health care data for human body as homeostasis mechanisms
and is considered to be critical for disease diagnosis and treatment (Vodovotz et al., 2013). Second,
the influence of the input variables will fade away over time if the variable has been missing for a
while. For example, one medical feature in electronic health records (EHRs) is only significant in
a certain temporal context (Zhou & Hripcsak, 2007). Therefore we propose a GRU-based model
called GRU-D, in which a decay mechanism is designed for the input variables and the hidden states
to capture the aforementioned properties. We introduce decay rates in the model to control the
decay mechanism by considering the following important factors. First, each input variable in health
care time series has its own medical meaning and importance. The decay rates should be flexible
to differ from variable to variable based on the underlying properties associated with the variables.
Second, as we see lots of missing patterns are informative in prediction tasks, the decay rate should be
indicative of such patterns and benefits the prediction tasks. Furthermore, since the missing patterns
are unknown and possibly complex, we aim at learning decay rates from the training data rather than
being fixed a priori. That is, we model a vector of decay rates � as

�

t

= exp {�max (0,W
�

�

t

+ b

�

)} (4)

where W

�

and b

�

are model parameters that we train jointly with all the other parameters of the
GRU. We chose the exponentiated negative rectifier in order to keep each decay rate monotonically
decreasing in a reasonable range between 0 and 1. Note that other formulations such as a sigmoid
function can be used instead, as long as the resulting decay is monotonic and is in the same range.

Our proposed GRU-D model incorporates two different trainable decays to utilize the missingness
directly with the input feature values and implicitly in the RNN states. First, for a missing variable,
we use an input decay �

x

to decay it over time toward the empirical mean (which we take as a default
configuration), instead of using the last observation as it is. Under this assumption, the trainable
decay scheme can be readily applied to the measurement vector by
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where x

d

t

0 is the last observation of the d-th variable (t0 < t) and x̃

d is the empirical mean of the
d-th variable. When decaying the input variable directly, we constrain W

�

x

to be diagonal, which
effectively makes the decay rate of each variable independent from the others. Sometimes the
input decay may not fully capture the missing patterns since not all missingness information can

4



Quantitative Evaluation
Quantitative Evaluation

Evaluations on synthetic dataset

with di↵erent missing rates

0.6

0.7

0.8

0.9

1

0 0.2 0.5 0.8

GRU-mean GRU-forward
GRU-simple GRU-D

Evaluations for mortality early

prediction

0.69

0.75

0.81

0.87

12 18 24 30 36 42 48

GRU-mean GRU-forward
GRU-simple GRU-D
SVM-simple RF-simple

AUC score on mortality prediction

Models MIMIC-III PhysioNet

Non-
RNN

LR-forward 0.7589 0.7423

SVM-forward 0.7908 0.8131

RF-forward 0.8293 0.8183

LR-simple 0.7715 0.7625

SVM-simple 0.8146 0.8277

RF-simple 0.8294 0.8157

RNN

LSTM-mean 0.8142 0.8025

GRU-mean 0.8192 0.8195

GRU-forward 0.8252 0.8162

GRU-simple 0.8380 0.8155

Ours GRU-D 0.8527 0.8424

RNN for MTS with Missing Values March 22, 2017 3 / 4



Qualitative Evaluation
Empirical Evaluation

Input decay plots of all 33 variables for mortality prediction on PhysioNet dataset

• Get a few important variables, e.g., weight, arterial pH, temperature, and
respiration rate, etc.

Histograms of of hidden state decay for mortality prediction on PhysioNet dataset

• Parameters related to variables with smaller missing rate are more spread out.

RNN for MTS with Missing Values March 22, 2017 4 / 4



Outline of today’s class

1. State space models for physiological 
condition modeling

2. Physiological assessment score for 
preterm infants

3. RNNs with missing values (on MIMIC)
4. CNNs for predicting disease onsets 

from longitudinal lab tests

5. Project discussion



Goal: 
- Early diagnosis of diseases for people who do not 

already have the disease. 
- Going toward raw biological signals (i.e. lab 

measurements) and learning rich representations directly 
from the raw input

Multi-task prediction of disease onsets 
from longitudinal lab tests

|cohort time|

|labs|

|diseases|

Backward
window

gap

Prediction 
Window

Input
Biomarkers over time

Output
Disease onsets over 
time

Framework:
Multi-task 
Supervised 
Prediction

(Razavian et al., “Multi-task Prediction of Disease Onsets from Longitudinal 
Laboratory Tests”. 1st Conference on Machine Learning and Health Care, 2016)



Cohort

298,000 individuals, with at least once a year lab 
measurement for 3 consecutive years included

- Input: Comprehensive lab panel + cholesterol (18 labs)
- Output: 133 conditions.

- Exclusion Per Disease: Anyone with even 1 
measurement prior to start of prediction window
- Done via masking the gradients in SGD process for 

excluded patients per task.

- Randomly Split to train(100K), validate(100K) and 
test(98k)set



CNN-1: Convolution over Labs then Time

E

A

B

C

D

Time
Input
labs

Vertical Convolution (+Relu+batchnorm)
(Kernel sizes: |Labs| x 1)

Vertical Convolution (+Relu+batchnorm)
(Kernel sizes: |previous layer filters | x 1)

Temporal 
Max pool Temporal 

Convolution

P(Y3=1|input)

P(Y1=1|input)

P(YM=1|input)

2 Layers of
Dropout + Fully 
connected
+ReLUTemporal Subnetwork: 

Temporal pooling and 
temporal convolution

Lab Combination 
Subnetwork: 
Vertical 
convolution to 
combine labs

batchnorm
+Log Softmax



CNN-2: Multi-resolution Convolution over 
Time

2 Layers of
Dropout + 
Fully 
connected
+ReLU

E

A
B

C
D

P(Y3=1|input)

P(Y1=1|input)

P(YM=1|input)Input

batchnorm
+Log Softmax

Max
Pool 

Max
Pool

Convolution
+batchnorm
+ReLU

Conv
+batchnorm
+ReLU

Conv
+batchnorm
+ReLU

Conv
+batchnorm
+ReLU

Max
Pool

Time
labs

Temporal convolution in 3 
resolutions. 



LSTM for Sequence Embedding

2 Layers of
Dropout + Fully connected
+ReLU
Connected to the last

LSTM memory unit

E

A

B

C

D

P(Y3=1|input)

P(Y1=1|input)

P(YM=1|input)

Time

Input
labs

batchnorm
+Log Softmax

Long Short Term 
Memory Recurrent 
Units 

Razavian, Marcus, and Sontag

Table 2: Name and LOINC of labs included as features for multi-task prediction
Lab name LOINC

Creatinine 2160-0
Urea nitrogen 3094-0
Potassium 2823-3
Glucose 2345-7
Alanine aminotransferase 1742-6
Aspartate aminotransferase 1920-8
Protein 2885-2
Albumin 1751-7
Cholesterol 2093-3
Triglyceride 2571-8
Cholesterol.in LDL 13457-7
Calcium 17861-6
Sodium 2951-2
Chloride 2075-0
Carbon dioxide 2028-9
Urea nitrogen/Creatinine 3097-3
Bilirubin 1975-2
Albumin/Globulin 1759-0

gender and the diagnosis and prescription data as binary indicators and age as a
continuous variable. We chose a regularization constant based on cross-validation.

• Random forests. We used the raw clinical and demographic data as input without
additional feature engineering. We chose the number of trees in the forest, the maxi-
mum depth of each tree, the maximum number of features to consider when looking
for the best split, the minimum number of samples required to split a node, and the
minimum number of samples in newly created leaves based on cross-validation using
random sampling of hyperparameters.

8.3 Figures and Tables

14



Results
Razavian, Marcus, and Sontag

ICD9 Code and disease description LR LSTM CNN1 CNN2 Ens Pos
585.6 End stage renal disease 0.886 0.917 0.910 0.916 0.920 837
285.21 Anemia in chr kidney dis 0.849 0.866 0.868 0.880 0.879 1598
585.3 Chr kidney dis stage III 0.846 0.851 0.857 0.858 0.864 2685
584.9 Acute kidney failure NOS 0.805 0.820 0.828 0.831 0.835 3039
250.01 DMI wo cmp nt st uncntrl 0.822 0.813 0.819 0.825 0.829 1522
250.02 DMII wo cmp uncntrld 0.814 0.819 0.814 0.821 0.828 3519
593.9 Renal and ureteral dis NOS 0.757 0.794 0.784 0.792 0.798 2111
428.0 CHF NOS 0.739 0.784 0.786 0.783 0.792 3479
V053 Need prphyl vc vrl hepat 0.731 0.762 0.752 0.780 0.777 862
790.93 Elvtd prstate spcf antgn 0.666 0.758 0.761 0.768 0.772 1477
185 Malign neopl prostate 0.627 0.757 0.751 0.761 0.768 761
274.9 Gout NOS 0.746 0.761 0.764 0.757 0.767 1529
362.52 Exudative macular degen 0.687 0.752 0.750 0.757 0.765 538
607.84 Impotence, organic orign 0.663 0.739 0.736 0.748 0.752 1372
511.9 Pleural e↵usion NOS 0.708 0.736 0.742 0.746 0.749 2701
616.10 Vaginitis NOS 0.692 0.736 0.736 0.746 0.747 440
600.01 BPH w urinary obs/LUTS 0.648 0.737 0.737 0.738 0.747 1681
285.29 Anemia-other chronic dis 0.672 0.713 0.725 0.746 0.739 1075
346.90 Migrne unsp wo ntrc mgrn 0.633 0.736 0.710 0.724 0.732 471
427.31 Atrial fibrillation 0.687 0.725 0.728 0.733 0.736 3766
250.00 DMII wo cmp nt st uncntr 0.708 0.718 0.708 0.719 0.728 3125
425.4 Prim cardiomyopathy NEC 0.683 0.718 0.719 0.722 0.726 1414
728.87 Muscle weakness-general 0.683 0.704 0.718 0.722 0.723 4706
620.2 Ovarian cyst NEC/NOS 0.660 0.720 0.700 0.711 0.719 498
286.9 Coagulat defect NEC/NOS 0.690 0.694 0.709 0.715 0.718 958

Table 1: AUC results on the test set for di↵erent models for the top 25 diseases sorted by maximum
AUC achieved by any of the models. Bold indicates that proposed models improve AUC
by at least 0.05 compared to the baseline with hand-engineered features. Abbreviations:
LR = Logistic Regression. CNN1 = Convolutional neural network architecture 1 (Figure
2). CNN2 = Convolution neural network architecture 2 (Figure 3). LSTM = Long Short-
Term Memory Network (Figure 4). Ens = Ensemble of the deep models. Pos = Number
of positive examples in the test set.

requiring at least one measurement of eGFR every 4 months of the training window. NICE
(2014) recommends 2-3 measurements of eGFR a year for patients with Stage 4 CKD.

We formulate the prediction task as taking a year of a patient’s lab, diagnosis, prescrip-
tion and demographic data as input and outputting a guess for whether or not that patient
will start dialysis or undergo a kidney transplantation at any point in a 1-year window
starting 3 months after the end of that year of clinical data. A training example for this
prediction task consists of a matrix X for a patient-year with X[i, j] = the value of the ith
clinical or demographic feature (the average value for each lab, an indicator for each ICD9
code and drug class prescription, an indicator for gender and a continuous value for age)

8

AUC sorted by maximum AUC achieved by any of the models

Goal: predict new onset of diseases 3 months in advance



Observations

• Rich representation learning improves prediction quality of 
weaker tasks in the multi-task settings

• Most gains are on tasks where the predictive features are 
NOT directly included in the input already
• Confirmed by the case study of chronic kidney disease 

progression, and our most-improved outcomes

• Different representation learning methods (CNN1, CNN2, 
LSTM) show similar improvements. 

• Ensemble of best models always further improves results

https://github.com/clinicalml/deepDiagnosis



A Model for Imputation On Correlated 
Biomarkers
• Imputation model based on structured multivariate kernel 

regression/smoothing[1]

• Formulated as unsupervised learning method

[1] Nadaraya and Watson, 1964

convolution 

K * X

convolution

K * I(X:obs)
 b

 a  a/b

shared 
parameter (K)

Mask and impute, given the rest 
of data points

MSE 

input

1-Impulse sequence for every observation in 
2D

(Razavian & Sontag, arXiv:1511.07938, 2015)



Data: 30K Individuals from the original training set.  
Dataset split equally between train, test and validate set.  
Loss: MSE. Train and evaluate only on (lab, person) with more than 1 observation.

Multivariate Kernels learned for each input dimension (total 18)



Outline of today’s class

1. State space models for physiological 
condition modeling

2. Physiological assessment score for 
preterm infants

3. RNNs with missing values (on MIMIC)
4. CNNs for predicting disease onsets from 

longitudinal lab tests
5. Project discussion



#5: Disease progression in multiple myeloma

Nikhil Munshi, MD

Dana-Farber Cancer Institute
Professor of Medicine, Harvard Medical School

Clinical 

mentor:

• Blood cancer, affecting 0.8% of US population at some point in their 
lifetime. 5 year survival rate is 49%

• Major advances in treatment, with 10+ new drugs on the market, 
more in clinical trials

• Project goal: predict patient survival and time to disease progression
• Data for ~1000 individuals:

• Cytogenetics, mutations, gene expression
• Biomarker levels across time (eg immunoglobulin levels)
• Clinical outcomes including disease status, time to response, treatment response
• Adverse events (eg anemia, bone pain, renal failure…)
• Quality of life measures (e.g. appetite loss, fatigue) and symptoms
• Treatment therapies including combination treatments



#5: Disease progression in multiple myeloma

Nikhil Munshi, MD

Dana-Farber Cancer Institute
Professor of Medicine, Harvard Medical School

Clinical 

mentor:

Days
200 400 600 800 1000 1200 1400

Tr
ea

tm
en

ts
La

b 
va

lu
es

 (l
og

)
R

es
po

ns
e

Relapse
Partial response



Data for multiple myeloma project

Simple form –

Takes just a few
minutes to request
the data, and no 
training needed



#6: Machine learning on medical images

Quanzheng Li, Ph.D.

Massachusetts General Hospital, Department of Radiology
Center for Clinical Data Science 
Associate Professor, Harvard Medical School

Clinical 

mentor:

• Led one of the top teams in Camelyon 2016 competition on cancer 
metastasis detection (pathology)

• Could use publicly available data and propose your own project in 
consultation with him

• One project he proposed:

Study transfer learning using chest CT images from patients in two 
cohorts, emphysema and lung cancer


