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INNOVATIONS INHEALTH CARE DELIVERY

Opinion

Adapting to Artificial Intelligence
Radiologists and Pathologists

as Information Specialists

Artificial intelligence—the mimicking of human cogni-
tion by computers—was once a fable in science fiction
but is becoming reality in medicine. The combination of
big data and artificial intelligence, referred to by some
as the fourth industrial revolution,’ will change radiol-
ogy and pathology along with other medical specialties.
Although reports of radiologists and pathelogists being
replaced by computers seem exaggerated,” these spe-
cialties must plan strategically for a future in which arti-
ficial intelligence is part of the health care workforce.
Radiologists have always revered machines and tech-
nology. In 1960, Lusted predicted “an electronic scanner-
computer to examine chest photofluorograms, tosepa-
rate the clearly normal chest films from the abnormal
chest films.™* Lusted further suggested that "the abnor-
mal chest films would be marked for later study by the

This progress in imaging has changed the work of
radiologists. Radiclogy, once confined to prajectional im-
ages, such as chest radiographs, has become more com-
plex and data rich. Cross-sectional imaging such as CT
and magnetic resonance, by showing anatomy with
greater clarity, has made diagnosis simpler in many in-
stances; for example, a ruptured aneurysmisinferred on
achest radiograph but actually seen on CT, However, this
has come at a price—the amount of data has increased
markedly. For example, a radiologist typically views
4000 images in a CT scan of multiple body parts ("pan
scan”) in patients with multiple trauma. The abun-
dance of data has changed how radiologists interpret im-
ages; from pattern recognition, with clinical context, to
searching for needles in haystacks; frominference to de-
tection. The radiclogist, once amaestro with achest ra-
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“Deep learning technology applied to
medical imaging may become the most
disruptive technology radiology has

seen since the advent of digital
imaging.” —Nadim Daher

“Radiologists and pathologists
need not fear artificial intelligence
but rather must adapt
incrementally to artificial

intelligence, retaining their own
services for cognitively challenging
tasks.” —Eric Topol
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' Chest Defense: Deep Learning Spots Disease Early
T Using Chest X-Rays

AUTOMATED ALGORITHM BASED ON DEEP MACHINE LEARNING
FORDETECTION OF DIABETIC RETINOPATHY

Advantages
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Deep Learning is Everywhere!
A Street Vendor in China

Deep Learning Service - System Development & Testing
Caffe installation: 10 Yuan = S1.5

CNN: 5 Yuan = $0.75 per layer

RNN: 8 Yuan = $1.2 per layer

Slide borrowed from Hua Xie, Philips Research North America pH 1L} pS

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017



Machine Learning that Matters

Kiri L. Wagstaff KIRL.L.WAGSTAFFLJPL.NASA.GOV

Jet Propulsion Laboratory, California Institute of Technology, 4800 (ak Grove Drive, Pasadena, CA 91109 USA

Link to paper

The three rules of meaningful ML innovation still apply

1. Eyes on the Prize
2. Involvement of the World Outside of ML
3. Meaningful Evaluation Methods
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https://arxiv.org/ftp/arxiv/papers/1206/1206.4656.pdf

“With this positive trial result (NLST), we have the opportunity to realize the greatest

single reduction of cancer mortality in the history of the war on cancer.”
— James Mulshine, MD
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Three rules of meaningful ML innovation

1. Eyes on the Prize
* How significant is the impact of a solution to the problem?
* How many lives would it change? What is a severe unmet need we can overcome?
* What would constitute a meaningful improvement over the status quo?
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Lung Screening at a Glance

IT CAUSES A LOT OF DEATHS

Lung cancer is the number-one cancer killer, taking
more lives than colon, breast and prostate cancer
combined.

Urgent need: Lung cancer kills 450 people every day in
the US alone.

Source: Onco Iss 2014

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017

EARLY DIAGNOSIS IS CRITICAL

Reduced Mortality:
Generally, early detection can
increase five-year survival by
nearly 90%.

Source: NEJM 2006

EXPECTED WIDESPREAD ADOPTION

In 2015, the CMS added annual screening for lung cancer
with LDCT ensuring that 3-4 million high-risk patients
could get lifesaving intervention regardless of income

level.
Source: NYTimes 2014.

Recommendation by NCCN and USPSTF .

Failure to screen lawsuits favor patients
Ex: DC jury awards S5M for failure to screen for cancer

PHILIPS



Lung Screening at a Glance

IT CAUSES A LOT OF DEATHS EARLY DIAGNOSIS IS CRITICAL EXPECTED WIDESPREAD ADOPTION

Lung cancer is the number-one cancer killer, taking

In 2015, the CMS added annual screening for lung cancer
more lives than colon, breast and prostate cancer

Reduced Mortality: with LDCT ensuring that 3-4 million high-risk patients
combined. Generally, early detection can could get lifesaving intervention regardless of income
increase five-year survival by level.
Urgent need: Lung cancer kills 450 people every day in nearly 90%. Source: NYTimes 2014.

the US alone. Recommendation by NCCN and USPSTF .

Source: NEJM 2006 . . .
Failure to screen lawsuits favor patients

Ex: DC jury awards S5M for failure to screen for cancer

Source: Onco Iss 2014
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Challenges for Adoption of LDCT

Cognitive Challenges:

* Vast majority are negative ~89.4%

» Satisfaction of search

* Volume and complexity of information

False Positives

* 96.4% FP of positive readings by LDCT

* Most have noninvasive imaging follow-up
* Invasive diagnosis procedure: 2.6%
 Complication rate: 1.4% (0.06% Major)

Overdiagnosis: More than 18% seem to be indolent.
* Bronchioloalveolar carcinoma 79% ; NSCLC 22% are overdiagnosed
e Risk: 11% by LDCT vs no screening and 9% vs CXR (lifetime follow-up)
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Challenges for Adoption of LDCT

Cognitive Challenges: 312013 RN D Qe 412013 CTBxX
* Vast majority are negative ~89.4% e 4

e Satisfaction of search

* Volume and complexity of information

False Positives ‘ll

* 96.4% FP of positive readings by LDCT LDCT screen FP at pre-biopsy CT
* Most have noninvasive imaging follow-up

* Invasive diagnosis procedure: 2.6%

* Complication rate: 1.4% (0.06% Major)

o

Overdiagnosis: More than 18% seem to be indolent.
* Bronchioloalveolar carcinoma 79% ; NSCLC 22% are overdiagnosed
e Risk: 11% by LDCT vs no screening and 9% vs CXR (lifetime follow-up)
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Class Imbalance

True positives and rare incidental findings, by virtue of being rare, are
underrepresented. If not accounted for properly, the class imbalance will
occur biasing the a model to predict the healthy-label.

3.7%

1000 samples (963 Negative; 37 positives)
* Network learns that all are negative

Cancer Class
e Accuracy of 96.3% and PPV =0

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017 pH I I-I ps



Class Imbalance

True positives and rare incidental findings, by virtue of being rare, are
underrepresented. If not accounted for properly, the class imbalance will
occur biasing the a model to predict the healthy-label.

Augmentation of underrepresented class*

Train on an easier problem . .

Welght the IOSS fu I’]CtIO n Source: Rotation-invariant convolutional neural netwaorks for galaxy morphology prediction. Sander Dieleman et. al.
Pre-training for lower level features

» Small rotations » Flipping
» Small translation » Brightness
» Scaling » Noise

*Underrepresented class should have examples of various ways rare class can present.
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18% are indolent (BAC 79%; broadly NSCLC 22%)

3.7%

Cancer Class
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Goals

1. Reduce time and cognitive load for radiologists reading LDCT images
2. Reduce unnecessary escalation and resultant complications due to

false positives reads

PHILIPS
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Three rules of meaningful ML innovation

2. Involvement of the World Outside
e Co-creation with clinicians

* Feedback from hospital infrastructure and hospital administrator

* |Involve experts in business models, marketing & sales
* Know your data!!!
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Value

Hospital:
o Reduce costs associated with unnecessary care escalation (10BE/yr on US health system)
o Reduced mis-diagnoses and resultant resource utilization
o ldentify high risk patients for follow-up

Patient:
o Improved outcomes (quality of life, mortality, cost)

Staff:

o Increase staff efficiency (improve throughput/reduce radiologist man hours)

Health System:
o Estimates of total health expenditures for a national screening program range from S1B to $3B
annually, constituting a 20% increase in expenditure for lung cancer overall.
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What is the FDA approval process?

“Soft” Use-Case
* Current regulatory situation is reminiscent of the
early days of computer-aided detection (CADe) E FEE ol
devices. i ot
* Cleared under the 510[k] process

“Hard” Use-case:

¢ L| ke Iy regu Iated dasS Cla SS 2, even Cla SS 3 First FDA Approval For Clinical Cloud-Based Deep Learning
. [ [ [ [ In Healthcare
L Re q u I re S a I a rge ra n d O m I Ze d C I I n I Ca I t rl a | The FDA approval of a cloud based machine learning application to be used in a clinical setting to
help physicians understand how a heart is functioning signals a major breakthrough. Cutting

examination time from up to an hour to just 15 seconds paves the way for more Al algorithms in

* Similar to computer-aided diagnosis (CADx) st
applications, which required premarket approval
(PMA) process.
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Data

Most learning
algorithms
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' Chest Defense: Deep Learning Spots Disease Early
T Using Chest X-Rays

AUTOMATED ALGORITHM BASED ON DEEP MACHINE LEARNING
FORDETECTION OF DIABETIC RETINOPATHY

Advantages
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Unique challenges for medical images
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Image characteristics are 3+ dimensional
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Commonly used transfer learning input that leverages the 3D structures

Reuse of network architecture and weights from ImageNet challenge

20\ e, fam, Lo [ [N G Output

Inception

This is just one simple example. There are many approaches to take 3D structures into account. There are obvious limitations to this approach.
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Image characteristics are 3+ dimensional

Volume and Chemistry Volume and Time
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Multimodal, Multiple Reconstructions, Registration Challenges

Soft Tissue - Axial Lung - Axial Multiplanar MIPs - Axial Coronal Sagittal
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Scale Variance

Negative Finding Positive Finding
Follow-up Diagnostic Tests
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High Dynamic Range

_ _ Low Signal High Signal
High Dynamic Range (oversaturated) (low signal-to-noise)

The scope of this paper is more about the value of HDR. Here, we are highlighting the insight that going from a HDR to LDR (e.g. 16-bit to 8-bit image) will destroy important image characteristics and reduce
performance in computer vision tasks. This is particularly important in radiology and pathology, where images tend to have a higher dynamic range than natural images.
Swisher* & Vinegoni*. Nature Communications (2016); *Contributed equally.
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High Dynamic Range

High Signal Low Signal High Dynamic Range

Images with high dynamic range do better in computer vision tasks

The scope of this paper is more about the value of HDR. Here, we are highlighting the insight that going from a HDR to LDR (e.g. 16-bit to 8-bit image) will destroy important image characteristics and reduce
performance in computer vision tasks. This is particularly important in radiology and pathology, where images tend to have a higher dynamic range than natural images.
Swisher* & Vinegoni*. Nature Communications (2016); *Contributed equally.
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High Dynamic Range
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The scope of this paper is more about the value of HDR. Here, we are highlighting the insight that going from a HDR to LDR (e.g. 16-bit to 8-bit image) will destroy important image characteristics and reduce
performance in computer vision tasks. This is particularly important in radiology and pathology, where images tend to have a higher dynamic range than natural images.
Swisher* & Vinegoni*. Nature Communications (2016); *Contributed equally.
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Commonly used transfer learning input that leverages the full dynamic range

rHDR

Histogram
Equalization

LDR1

LDR2

Reuse of network architecture and weights from ImageNet challenge
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LDR = Low Dynamic Range; rHDR = reconstructed High Dynamic Range image at a Low dynamic range
This is just one simple example. There are many approaches to utilize HDR characteristics. There are obvious limitations to this approach.

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017

Output
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Downsampling - We must be creative in how we tackle dimensionality

MU 358 MUE_ 8
RHEE ENE RES ERE

Examples of healthy tissue and typlcal mterstltlal lung disease patterns (link to paper). Clinical 5|gn|f|cant features look like noise
Left to right: Healthy, ground glass opacity, micronodules, consolidation, reticulation, )

honeycombing, combination of ground glass and reticulation).

Still looks like a woman
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http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7422082

Transfer Learning

Use Linear classifier on This is going to be
top layer challenging!

Fine-tune a large number

Fine-tune a few layers
of layers

PHILIPS
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Value of pre-training for DL tasks:

4 |

DL model
e starting from
scratch

Object presence
detection (T/F)

Training failed: no convergence, poor performance

4 |

Object location (x-y-z)

: Object presence
detection (T/F)

Training successful

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017

Aids in ambitious DL tasks:

Learning the ‘easier’ localization
(regression) task served as ‘stepping
stone’ for learning the detection task:
the weights learned for localization
were close enough to what was needed
for detection to allow convergence.

Multitask Capability:
Network detects and localizes

Transparency:
Easier to understand and justify the

output of DNNs

Re-use:
Re-use successful DNNs for new tasks

PHILIPS



“Deep Learning is a black box” — most physicians

Feature understanding

W
R

http://www.matthewzeiler.com/pubs/arxive2013/arxive2013.pdf
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Uncertainty

Convolutional Encoder-Decoder

I conv + Batch Normalisation + RelU
I Dropout [l Pooling/Upsampling Softmax

http://www.computervisionblog.com/2016/06/making-deep-
networks-probabilistic-via.html

Stochastic Dropout
Samples

mean

variance
—>

Segmentation

Model Uncertainty
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“Deep Learning is a black box” — most physicians

.

Feature understanding Uncertainty

et

Paper from Philips Research (link)

Must read blog (Link)
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http://mlg.eng.cam.ac.uk/yarin/blog_3d801aa532c1ce.html
https://arxiv.org/pdf/1611.06284.pdf
https://arxiv.org/pdf/1611.06284.pdf

Three rules of meaningful ML innovation

3. Meaningful Evaluation Methods
* Generalization - multisite clinical trails, sustainability to changes in technology
 Machine vs Human vs Machine + Human
* Improvement of clinical outcome

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017
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The NEW ENGLAND JOURNAL of MEDICINE

ORIGINAL ARTICLE

Probability of Cancer in Pulmonary Nodules
Detected on First Screening CT

Table 2. Prediction Models for the Probability of Lung Cancer in Pulmonary Nodules.*
Model 1a: Model 2a:
Predictor Variables Parsimonious Model, No Spiculation Full Model, No Spiculation
0dds Ratio Beta 0dds Ratio Beta
(95% C1) PValue  Coefficient (95% C1) PValue  Coefficient
Age, peryr 1.03 (0.99-1.07) 011 0.0321
Sex, female vs. male 1.79(1.13-282) 001 0.5806 1.76 (1.09-2.83) 0.02 0.5635
Family history of lung cancer, yes vs. no 1.35 (0.84-2.16) 021 0.3013
Emphysema, yes vs. no 1.41 (0.82-2.42) 021 0.3462
Nodule size <0001  -5.8616 <0001  -5.6693
Nodule type
Nonsolid or with ground-glass opacity 0.74 (0.40-1.35) 033 -0.3005
Part-solid 1.40 (0.72-2.74) 032 0.3395
Solid Reference Reference
Nodule location, upper vs. middle or 1.90(1.78-3.08)  0.009 06439 2.04 (1.22-3.41) 0.007 0.7116
lower lobe
Nodule count per scan, per each additional 0.92 (0.85-1.00) 0.05 -0.0803
nodule
Model constant -6.5929 -6.8071
Model 1b: Model 2b:
Parsimonious Model, with Spiculation Full Model, with Spiculation
Odds Ratio P Value Beta 0dds Ratio P Value Beta
(95% Cl) Coefficient (95% Cl) Coefficient
Age, peryr 1.03 (0.99-1.07) 016 0.0287
Sex, female vs. male 1.91 (1.19-3.07) 0.008 0.6467 1.82 (1.12-2.97) 0.02 0.6011
Family history of lung cancer, yes vs. no 1.34 (0.83-2.17) 023 0.2961
Emphysema, yes vs. no 1.34 (0.78-2.33) 029 0.2953
Nodule size <0.0017 55537 <0007 -5.3854
Nodule type
Nonsolid or with ground-glass opacity 0.88 (0.48-1.62) 068 -0.1276
Part-solid 1.46 (0.74-2.88) 028 03770
Solid Reference Reference
Nodule location, upper vs. middle or 182(1.12-298) 002 0.6009 1,93 (1.14-3.27) 002 0.6581
lower lobe
Nodule count per scan, per each additional 0.92 (0.85-1.00) 0.049 -0.0824
nodule
Spiculation, yes vs. no 254 (1.45-4.43) 0001 0.9309 217 (1.16-4.05) 0.02 0.7729
Model constant -6.6144 -6.7892

* Models 1a and 1b are parsimonious prediction models, and Models 2a and 2b are full logistic-regression prediction models. Age is centered
on the mean of 62 years, nodule size is centered on 4 mm, and nodule count is centered on 4 (i.e., 62 is subtracted from the actual age,
4 mm is subtracted from the actual nodule size, and 4 is subtracted from the actual number of nodules).

 Nodule size had a nonlinear relationship with lung cancer and is transformed in this model. The odds ratio of the transformed variable has
no direct i without back ion. Nodule-size ion, which is based on multiple fractional polynomial analy-

u:!?u.)“)fl,ssmsa:; nodule size was measured in millimeters.

ses, was performed with the following calculation: ((Nod

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017

0.9

0.85

0.75

Predictive accuracy
©
[0}

0.7

Model Alone

Link to article

Radiologist Alone

Radiologist + Model

(Mean of 6 Observers) (Mean of 6 observers)
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http://www.auntminnie.com/index.aspx?sec=ser&sub=def&pag=dis&ItemID=116180

Look at the star in the center
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There is an X in this image, can you find it?
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Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017



How many people noticed the T?
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Think about where and when the algorithm will be used so that it
will actually deliver improved clinical outcomes.
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Example of meaningful evaluation metric

Speaker for next week

(Al + Pathologist) > Pathologist

0.04
0.035
0.03

0.025
Error

Rate* 0.02

0.015
0.01
0.005

0

* Error rate defined as 1 — Area under the Receiver Operator Curve

3.5%
2.9%
0.5%
Study Al model Al model
Pathologist + Study

Pathologist

** A study pathologist, blinded to the ground truth diagnoses,
independently scored all evaluation slides.

Christine Swisher - Guest Seminar, MIT: Machine Learning for Healthcare, Spring 2017
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Three rules of meaningful ML innovation

1. Eyes on the Prize
* How significant is the impact of a solution to the problem?
* How many lives would it change? What is a severe unmet need we can overcome?
* What would constitute a meaningful improvement over the status quo?

2. Involvement of the World Outside
e Co-creation with clinicians
* Feedback from hospital infrastructure and hospital administrator
* Involve experts in business models, marketing & sales
* Know your data!!!

3. Meaningful Evaluation Methods
* Generalization - multisite clinical trails, sustainability to changes in technology
e Machine vs Human vs Machine + Human
* Improvement of clinical outcome
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