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A lot has changed in the past few years. Today’s models can predict hospital admissions 
in a range of conditions such as CHF, DM, COPD and asthma. Because it is easier to 
integrate data from outpatient and inpatient settings, models are able to predict both 
initial admissions and readmissions. And, in contrast to the VHA’s findings, today’s 
models have been statistically validated with strong results. For example, Optum has 
developed predictive hospital admissions models with c-statistics of 0.757 for CHF, 
0.833 for COPD, 0.765 for DM, and 0.784 for pediatric asthma. Unlike past models, 
these models rely heavily on clinical data, which includes actual lab results to better 
determine risk levels. 

As data sets grow in size and scope, today’s models can be retrained and become even 
more robust. For example, Optum’s CHF model had an original c-statistic of 0.733 for 
its IDN model, which was based on data from a total patient pool of 20M patients 
(inclusive of all conditions). Retraining at a later date with an additional 10M patients 
resulted in a c-statistic of 0.757. In addition, efforts are now being made to broaden 
the scope of variables that can be included. Including data from care management 
assessments, for example, will allow for new variables related to patients’ psychosocial 
backgrounds, barriers to care, and quality of care. Evolving data sets in this way will 
push predictive abilities even further.

   HOSPITAL ADMISSIONS MODELS  IDN MODEL NON-IDN 
MODEL

Area Under the Receiver Operating Curve (C-STATS)

NOTE:  Models developed using data from over 30M patients (inclusive of all conditions). All models 
predict both initial admission and readmission, for both inpatient and emergency department. 
Pediatric asthma model also predicts observation visits.

CONGESTIVE HEART FAILURE MODEL
Training sample 0.757 0.742
Avg of testing samples 0.739 0.708

CHRONIC OBSTRUCTIVE PULMONARY DISEASE MODEL
Training sample 0.833 0.802
Avg of testing samples 0.830 0.799

DIABETES MELLITUS MODEL
Training sample 0.765 0.754
Avg of testing samples 0.781 0.765

PEDIATRIC ASTHMA MODEL
Training sample 0.784 0.739
Avg of testing samples 0.761 0.716

Figure 5: Examples of statistically validated admissions models from Optum

White Paper
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High-risk diabetes patients, likelihood of 
COPD & CHF-related hospitalizations
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High-risk diabetes  
patients missing tests

# of A1c 
tests

# of LDL 
tests Last A1c Date of 

last A1c Last LDL Date of 
last LDL

Patient 1 2 0 9.2 5/3/13 N/A N/A

Patient 2 2 0 8 1/30/13 N/A N/A

Patient 3 0 0 N/A N/A N/A N/A

Patient 4 0 2 N/A N/A 133 8/9/13

Patient 5 0 0 N/A N/A N/A N/A

Patient 6 0 1 N/A N/A 115 7/16/13

Patient 7 1 0 10.8 9/18/13 N/A N/A

Patient 8 0 0 N/A N/A N/A N/A

Patient 9 0 0 N/A N/A N/A N/A

Patient 10 0 0 N/A N/A N/A N/A

Example commercial product
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Sentara’s early results from its use of predictive analytics are promising. They have 
been well received by physicians and have had a significant impact on high-risk patient 
lists. In one practice, of the 44 high-risk patients identified, only one had been part 
of previous high-risk lists. In addition, rates of engagement in care coordination 
programs have improved, attaining 50%+ of eligible patients in some cases. Sentara 
is now expanding its use of predictive analytics to the remaining PCMHs and is also 
introducing the pediatric asthma model as an additional tool.

A tool for moving from reactive to proactive care
Sentara is one of many providers beginning to integrate predictive analytics into their 
organizations. They are using it to help rebalance their care model in favor of more 
proactive care and less reactive care. By homing in on high-risk patients sooner and 
with more accuracy, providers can focus their resources where they will have the 
highest impact, and succeed in an environment rapidly moving toward value-driven 
health care. 

Patient ID: 0058C2A5AA7C92BB3626E507
Patient Age: 68
Cohort: Congestive Heart Failure
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Figure 8: Patient Profiles equip providers with holistic view of high-risk patients
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Step 4. Develop Patient’s Risk Profiles
A patient’s age, gender and mix of ERG and custom markers are used to create his or her risk profile. 
Patients without activity data will have no episodes of care and no ERGs or custom markers. For these 
patients, risk is based solely on age and gender.

Step 5. Create Patient Risk Scores
The next step is the assignment of a weight to each ERG, custom and demographic marker of risk. 
These weights describe the contribution to risk of being in a specific age-sex group or having a 
particular medical condition included in an ERG or having high utilisation based on the custom markers.

The markers are set to 1 if the marker is observed for an individual, 0 if not. Each patient has his or 
her own profile of age-sex, ERGs and utilisation. To calculate a person’s risk score, the sum of these 
risk weights for each marker observed, including the intercept, is computed before it is exponentiated 
and divided by the same figure plus one i.e. if the total amount of the coefficients is X, then the risk 
score is: Exp(X) / (1 + Exp(X)).

Example using the Acute + GP 12 month model:

A 52 year old male has the following activity in the experience year: 

Two A&E visits within the 0-3 month timeframe

One IP admission with a LOS of 3 days

Four OP attendances 

Two specialties triggered: one in Endocrinology and another in Cardiology 

Table 12 presents the markers triggered for the patient and the final probability calculated based on 
the markers. Note: The risk ratio is the likelihood (probability) divided by the overall average. 

Variable Description 12m
F_01_011 Lower cost infectious disease 0.1725
F_08_042 CAD, heart failure, cardiomyopathy, II 0.3932
X302 Endocrinology Specialty 0.1715
X329 Cardiology Specialty 0.2840
ae3_med If 2 A&E Attendances in last 3 month period 0.7340
los_lo If sum of Length of Stay less than 5 days in period 0.3645
m45_54 Male aged between 45-54 0.9491
opattend3_hi If greater than 3 first or follow-up Outpatient Attendances in last 3 month period 0.2930

Table 12 Example Score Calculation

Intercept -5.4605
TOTAL (-Intercept) -2.0987
Exp (TOTAL) 0.1092
Risk Ratio 4.1800
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Discussion points
• What are other areas of healthcare where 
we might be concerned with machine bias?

• What are the relevant protected groups?

• How do we measure bias if we don’t 
observe the counterfactual?



Formalizing fairness
• Fairness through blindness
• Demographic parity / group fairness / 
statistical parity

• Calibration / predictive parity
• Error rate balance / equalized odds
• Individual fairness



Fairness through  
Blindness 



The case of ProPublica versus 
Northpointe

• Score S=S(x) satisfies predictive parity at 
threshold sHR if

where R is the protected attribute taking 
two states, b or w

• I.e., positive predictive value (PPV) same 
across groups

(Chouldechova, “Fair prediction with disparate impact”,’17)

their response to the ProPublica investigation, Flores et al. 6 verify that COMPAS is well-calibrated
using logistic regression modeling.

Definition 2 (Predictive parity). A score S = S(x) satisfies predictive parity at a threshold sHR if
the likelihood of recidivism among high-risk offenders is the same regardless of group membership.
That is, if,

P(Y = 1 | S > sHR, R = b) = P(Y = 1 | S > sHR, R = w). (2.2)

Predictive parity at a given threshold sHR amounts to requiring that the positive predictive
value (PPV) of the classifier Ŷ = 1S>sHR be the same across groups. While predictive parity
and calibration look like very similar criteria, well-calibrated scores can fail to satisfy predictive
parity at a given threshold. This is because the relationship between (2.2) and (2.1) depends on
the conditional distribution of S | R = r, which can differ across groups in ways that result in
PPV imbalance. In the simple case where S itself is binary, a score that is well-calibrated will also
satisfy predictive parity. Northpointe’s refutation7 of the ProPublica analysis shows that COMPAS
satisfies predictive parity for threshold choices of interest.

Definition 3 (Error rate balance). A score S = S(x) satisfies error rate balance at a threshold
sHR if the false positive and false negative error rates are equal across groups. That is, if,

P(S > sHR | Y = 0, R = b) = P(S > sHR | Y = 0, R = w) , and (2.3)

P(S ≤ sHR | Y = 1, R = b) = P(S ≤ sHR | Y = 1, R = w), (2.4)

where the expressions in the first line are the group-specific false positive rates, and those in the
second line are the group-specific false negative rates.

ProPublica’s analysis considered a threshold of sHR = 4, which they showed leads to considerable
imbalance in both false positive and false negative rates. While this choice of cutoff met with some
criticism, we will see later in this section that error rate imbalance persists—indeed, must persist—
for any choice of cutoff at which the score satisfies the predictive parity criterion. Error rate balance
is also closely connected to the notions of equalized odds and equal opportunity as introduced in the
recent work of Hardt et al. 13 .

Definition 4 (Statistical parity). A score S = S(x) satisfies statistical parity at a threshold sHR

if the proportion of individuals classified as high-risk is the same for each group. That is, if,

P(S > sHR | R = b) = P(S > sHR | R = w) (2.5)

Statistical parity also goes by the name of equal acceptance rates 14 or group fairness 15, though
it should be noted that these terms are in many cases not used synonymously. While our discussion
focusses primarily on first three fairness criteria, statistical parity is widely used within the machine
learning community and may be the criterion with which many readers are most familiar16,17.
Statistical parity is well-suited to contexts such as employment or admissions, where it may be
desirable or required by law or regulation to employ or admit individuals in equal proportion
across racial, gender, or geographical groups. It is, however, a difficult criterion to motivate in the
recidivism prediction setting, and thus will not be further considered in this work.
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The case of ProPublica versus 
Northpointe
• Northpointe score approximately satisfies 
predictive parity:

the values (or the distribution of values) in this table. Another constraint—one that we have no
direct control over—is imposed by the recidivism prevalence within groups. It is not difficult to
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(a) Bars represent empirical estimates of the expres-
sions in (2.1): P(Y = 1 | S = s,R = r) for decile
scores s ∈ {1, . . . , 10}.
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(b) Bars represent empirical estimates of the expres-
sions in (2.2): P(Y = 1 | S > sHR, R = r) for values
of the high-risk cutoff sHR ∈ {0, . . . , 9}

0.00

0.25

0.50

0.75

1.00

0 1 2 3 4 5 6 7 8 9
High−risk cutoff sHR

Fa
ls

e 
po

si
tiv

e 
ra

te

Error balance assessment: FPR

(c) Bars represent observed false positive rates,
which are empirical estimates of the expressions in
(2.3): P(S > sHR | Y = 0, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}
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(d) Bars represent observed false negative rates,
which are empirical estimates of the expressions in
(2.4): P(S ≤ sHR | Y = 1, R = r) for values of the
high-risk cutoff sHR ∈ {0, . . . , 9}

Figure 1: Empirical assessment of the COMPAS RPI according to three of the fairness criteria
presented in Section 2.1. Error bars represent 95% confidence intervals. These Figures confirm
that COMPAS is (approximately) well-calibrated, satisfies predictive parity for high-risk cutoff
values of 4 or higher, but fails to have error rate balance.
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values of 4 or higher, but fails to have error rate balance.
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(Chouldechova, “Fair prediction 
with disparate impact”,’17)

their response to the ProPublica investigation, Flores et al. 6 verify that COMPAS is well-calibrated
using logistic regression modeling.

Definition 2 (Predictive parity). A score S = S(x) satisfies predictive parity at a threshold sHR if
the likelihood of recidivism among high-risk offenders is the same regardless of group membership.
That is, if,

P(Y = 1 | S > sHR, R = b) = P(Y = 1 | S > sHR, R = w). (2.2)

Predictive parity at a given threshold sHR amounts to requiring that the positive predictive
value (PPV) of the classifier Ŷ = 1S>sHR be the same across groups. While predictive parity
and calibration look like very similar criteria, well-calibrated scores can fail to satisfy predictive
parity at a given threshold. This is because the relationship between (2.2) and (2.1) depends on
the conditional distribution of S | R = r, which can differ across groups in ways that result in
PPV imbalance. In the simple case where S itself is binary, a score that is well-calibrated will also
satisfy predictive parity. Northpointe’s refutation7 of the ProPublica analysis shows that COMPAS
satisfies predictive parity for threshold choices of interest.

Definition 3 (Error rate balance). A score S = S(x) satisfies error rate balance at a threshold
sHR if the false positive and false negative error rates are equal across groups. That is, if,

P(S > sHR | Y = 0, R = b) = P(S > sHR | Y = 0, R = w) , and (2.3)

P(S ≤ sHR | Y = 1, R = b) = P(S ≤ sHR | Y = 1, R = w), (2.4)

where the expressions in the first line are the group-specific false positive rates, and those in the
second line are the group-specific false negative rates.

ProPublica’s analysis considered a threshold of sHR = 4, which they showed leads to considerable
imbalance in both false positive and false negative rates. While this choice of cutoff met with some
criticism, we will see later in this section that error rate imbalance persists—indeed, must persist—
for any choice of cutoff at which the score satisfies the predictive parity criterion. Error rate balance
is also closely connected to the notions of equalized odds and equal opportunity as introduced in the
recent work of Hardt et al. 13 .

Definition 4 (Statistical parity). A score S = S(x) satisfies statistical parity at a threshold sHR

if the proportion of individuals classified as high-risk is the same for each group. That is, if,

P(S > sHR | R = b) = P(S > sHR | R = w) (2.5)

Statistical parity also goes by the name of equal acceptance rates 14 or group fairness 15, though
it should be noted that these terms are in many cases not used synonymously. While our discussion
focusses primarily on first three fairness criteria, statistical parity is widely used within the machine
learning community and may be the criterion with which many readers are most familiar16,17.
Statistical parity is well-suited to contexts such as employment or admissions, where it may be
desirable or required by law or regulation to employ or admit individuals in equal proportion
across racial, gender, or geographical groups. It is, however, a difficult criterion to motivate in the
recidivism prediction setting, and thus will not be further considered in this work.
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The case of ProPublica versus 
Northpointe
• Northpointe score does not satisfy error 
rate balance:

the values (or the distribution of values) in this table. Another constraint—one that we have no
direct control over—is imposed by the recidivism prevalence within groups. It is not difficult to
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Figure 1: Empirical assessment of the COMPAS RPI according to three of the fairness criteria
presented in Section 2.1. Error bars represent 95% confidence intervals. These Figures confirm
that COMPAS is (approximately) well-calibrated, satisfies predictive parity for high-risk cutoff
values of 4 or higher, but fails to have error rate balance.
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desirable or required by law or regulation to employ or admit individuals in equal proportion
across racial, gender, or geographical groups. It is, however, a difficult criterion to motivate in the
recidivism prediction setting, and thus will not be further considered in this work.
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which are empirical estimates of the expressions in
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Figure 1: Empirical assessment of the COMPAS RPI according to three of the fairness criteria
presented in Section 2.1. Error bars represent 95% confidence intervals. These Figures confirm
that COMPAS is (approximately) well-calibrated, satisfies predictive parity for high-risk cutoff
values of 4 or higher, but fails to have error rate balance.

6

(Chouldechova, “Fair prediction 
with disparate impact”,’17)



The case of ProPublica versus 
Northpointe
• Northpointe score does not satisfy error 
rate balance:
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their response to the ProPublica investigation, Flores et al. 6 verify that COMPAS is well-calibrated
using logistic regression modeling.

Definition 2 (Predictive parity). A score S = S(x) satisfies predictive parity at a threshold sHR if
the likelihood of recidivism among high-risk offenders is the same regardless of group membership.
That is, if,

P(Y = 1 | S > sHR, R = b) = P(Y = 1 | S > sHR, R = w). (2.2)

Predictive parity at a given threshold sHR amounts to requiring that the positive predictive
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satisfy predictive parity. Northpointe’s refutation7 of the ProPublica analysis shows that COMPAS
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Definition 3 (Error rate balance). A score S = S(x) satisfies error rate balance at a threshold
sHR if the false positive and false negative error rates are equal across groups. That is, if,

P(S > sHR | Y = 0, R = b) = P(S > sHR | Y = 0, R = w) , and (2.3)

P(S ≤ sHR | Y = 1, R = b) = P(S ≤ sHR | Y = 1, R = w), (2.4)

where the expressions in the first line are the group-specific false positive rates, and those in the
second line are the group-specific false negative rates.

ProPublica’s analysis considered a threshold of sHR = 4, which they showed leads to considerable
imbalance in both false positive and false negative rates. While this choice of cutoff met with some
criticism, we will see later in this section that error rate imbalance persists—indeed, must persist—
for any choice of cutoff at which the score satisfies the predictive parity criterion. Error rate balance
is also closely connected to the notions of equalized odds and equal opportunity as introduced in the
recent work of Hardt et al. 13 .

Definition 4 (Statistical parity). A score S = S(x) satisfies statistical parity at a threshold sHR

if the proportion of individuals classified as high-risk is the same for each group. That is, if,

P(S > sHR | R = b) = P(S > sHR | R = w) (2.5)

Statistical parity also goes by the name of equal acceptance rates 14 or group fairness 15, though
it should be noted that these terms are in many cases not used synonymously. While our discussion
focusses primarily on first three fairness criteria, statistical parity is widely used within the machine
learning community and may be the criterion with which many readers are most familiar16,17.
Statistical parity is well-suited to contexts such as employment or admissions, where it may be
desirable or required by law or regulation to employ or admit individuals in equal proportion
across racial, gender, or geographical groups. It is, however, a difficult criterion to motivate in the
recidivism prediction setting, and thus will not be further considered in this work.
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Impossibility of satisfying all 3 criteria
• Consider the following confusion matrix:

• Let p be the prevalence within a group. Then,

• If PPV is the same across groups but p is 
different across groups, FPR/(1-FNR) must also 
be different across groups

(Chouldechova, “Fair prediction with disparate impact”,’17)

Low-Risk High-Risk
Y = 0 TN FP
Y = 1 FN TP

Table 1: T/F denote True/False and N/P denote Negative/Positive. For instance, FP is the number
of false positives: individuals who are classified as high-risk but who do not reoffend.

show that the prevalence (p), positive predictive value (PPV), and false positive and negative error
rates (FPR, FNR) are related via the equation

FPR =
p

1− p

1− PPV

PPV
(1− FNR). (2.6)

From this simple expression we can see that if an instrument satisfies predictive parity—that is,
if the PPV is the same across groups—but the prevalence differs between groups, the instrument
cannot achieve equal false positive and false negative rates across those groups.

This observation enables us to better understand why we observe such large discrepancies in
FPR and FNR between black and white defendants in Figure 1. The recidivism rate among black
defendants in the data is 51%, compared to 39% for White defendants. Thus at any threshold
sHR where the COMPAS RPI satisfies predictive parity, equation (2.6) tells us that some level of
imbalance in the error rates must exist. Since not all of the fairness criteria can be satisfied at the
same time, it becomes important to understand the potential impact of failing to satisfy particular
criteria. This question is explored in the context of a hypothetical risk-based sentencing framework
in the next section.

3 Assessing impact

In this section we show how differences in false positive and false negative rates can result in
disparate impact under policies where a high-risk assessment results in a stricter penalty for the
defendant. Such situations may arise when risk assessments are used to inform bail, parole, or
sentencing decisions. In Pennsylvania and Virginia, for instance, statutes permit the use of RPI’s
in sentencing, provided that the sentence ultimately falls within accepted guidelines1. We use the
term “penalty” somewhat loosely in this discussion to refer to outcomes both in the pre-trial and
post-conviction phase of legal proceedings. For instance, even though pre-trial outcomes such as
the amount at which bail is set are not punitive in a legal sense, we nevertheless refer to bail amount
as a “penalty” for the purpose of our discussion.

There are notable cases where RPI’s are used for the express purpose of informing risk reduction
efforts. In such settings, individuals assessed as high risk receive what may be viewed as a benefit
rather than a penalty. The PCRA score, for instance, is intended to support precisely this type of
decision-making at the federal courts level11. Our analysis in this section specifically addresses use
cases where high-risk individuals receive stricter penalties.

To begin, consider a setting in which guidelines indicate that a defendant is to receive a penalty
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Non-Discrimination in
Supervised Learning

• Formal setup:
• Available features 𝑋 (e.g. credit history, payment history, rent and 

house purchase history, number of dependents, driving record, 
employment record, education, etc)

• Protected attribute 𝐴 (e.g. race)
• Prediction target 𝑌 (e.g. not defaulting on loan)
• Learn predictor 𝑌(𝑋) or 𝑌(𝑋, 𝐴) for 𝑌

• Learn based on training set 𝑥𝑖, 𝑎𝑖, 𝑦𝑖 𝑖=1..𝑚

…but for now assume population distribution (𝑋, 𝐴, 𝑌) is known

• What does it mean for 𝒀 to be non-discriminatory?



Demographic Parity
• Require the same fraction of 𝑌 = 1 decisions in each population

• If 70% of whites get loans, then also 70% of blacks should

• Can be stated as: 𝑌 ⊥ 𝐴

Problems:
• What if true 𝑌 correlates with 𝐴?
• Even 𝑌 = 𝑌 (if we could somehow predict it perfectly) doesn’t satisfy 

requirement
• e.g. giving loans exactly to those that won’t default

• Also too weak: doesn’t control different error rate
• e.g. allows giving loans to qualified 𝐴 = 0 people and random 𝐴 = 1 people

• Typical relaxation (with some legal standing), “The 80% Rule”:
𝑃 𝑌 = 1 𝐴 = 1 ≤ 0.80 ⋅ 𝑃( 𝑌 = 1|𝐴 = 0)



Suggested Notion: Equalized Odds
𝑌 ⊥ 𝐴|𝑌

• Prediction does not provide any additional information about 𝐴 beyond 
what the truth 𝑌 already tells us on 𝐴

• The perfect predictor, 𝑌 = 𝑌, always satisfies equalized odds

• Compared to demographic parity:
𝑃 𝑌 𝑌 = 𝑦, 𝐴 = 𝑎 = 𝑃( 𝑌|𝑌 = 𝑦, 𝐴 = 𝑎′)

• Having 𝑌 ⊥ 𝐴 is not sufficient for equalized odds

𝑌 𝐴𝑌



Ensuring Equalized Odds
• Given (possibly unfair) predictor 𝑌(𝑋) or 𝑌(𝑋, 𝐴),

and knowledge of 𝒟 𝑌, 𝑋, 𝐴, 𝑌 𝑋, 𝐴
create (possibly randomized) ෨𝑌( 𝑌, 𝐴) satisfying equalized odds

Focusing on binary 𝑌, 𝑌, 𝐴 ∈ {0,1}:
• Can set four parameters:

𝑃 ෨𝑌 = 1 𝑌 = 0, 𝐴 = 0 , 𝑃 ෨𝑌 = 1 𝑌 = 1, 𝐴 = 0 ,
𝑃 ෨𝑌 = 1 𝑌 = 0, 𝐴 = 1 , 𝑃 ෨𝑌 = 1 𝑌 = 1, 𝐴 = 1

• Need to satisfy two linear constraints:
𝑃 ෨𝑌 = 1 𝑌 = 1, 𝐴 = 0 = 𝑃 ෨𝑌 = 1 𝑌 = 1, 𝐴 = 1

𝑃 ෨𝑌 = 1 𝑌 = 0, 𝐴 = 0 = 𝑃 ෨𝑌 = 1 𝑌 = 0, 𝐴 = 1

Î Optimize 𝔼 𝑙𝑜𝑠𝑠 ෨𝑌; 𝑌 using Linear Programming 

True Pos. Rate
False Pos. Rate



Ensuring Equalized Odds

Optimal ෨𝑌( 𝑌, 𝐴) is either constant or:
• For 𝐴 = 1 flip from 𝑌 = 0 to ෨𝑌 = 1 with prob 𝑝
• For 𝐴 = 0 flip from 𝑌 = 1 to ෨𝑌 = 0 with prob 𝑞
(or the other way around) 

𝒀|𝑨 = 𝟏

¬𝒀|𝑨 = 𝟏

¬𝒀|𝑨 = 𝟎

𝒀|𝑨 = 𝟎

෨𝑌 𝑌, 𝐴 |𝐴 = 1

෨𝑌 𝑌, 𝐴 |𝐴 = 0
Optimal

equalized odds
෨𝑌( 𝑌, 𝐴)

False Positive Rate 𝑃( ෨𝑌 = 1|𝑌 = 0)

Tr
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෨ 𝑌
=
1|
𝑌
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Post-Hoc Correction Not Optimal
Example due to Blake Woodworth

• Optimal unconstrained classifier: 𝑌 𝑋1, 𝑋2 = 𝑋1
Î error = 𝑃 𝑌 ≠ 𝑌 = 1%

• Equalized odds derived from 𝑌, 𝐴 (not learning from features 
again) must be independent of 𝑌

Î error = Τ1 2

• Optimal equalized odds  predictor : 𝑌 𝑋1, 𝑋2, 𝐴 = 𝑋2
Î error = 1.01%

𝑌 𝐴𝑋2 𝑋1
𝑃 𝑌 = 1 =

1
2

𝑃 𝑋2 = 𝑌 = 0.9899 𝑋1 = 𝐴
𝑃 𝐴 = 𝑌 = 0.99



Learning(Fair(Representa2ons 

•  Generalizes)to)new)data:)learn)general)mapping,)applies)
to)any)individual)

•  Mapping)should)sa/sfy)fairness)criteria,)vendor)u/lity)

•  Learn)prototypes,)distances)

•  Use)fair)representa/on)for)addi/onal)classifica/on)tasks)
(transfer)learning))

•  Working)example:)dataset)of)bank)loan)decisions,)
protected)group)(S+))is)women)

)
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ICML,)2013)



Model(Overview 
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