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Early detection of
Type 2 diabetes:

(Razavian et al., Big 
Data, 2016)

*Last week: Type 2 diabetes
1994 2000

<4.5%         4.5%–5.9%           6.0%–7.4%        7.5%–8.9%            >9.0%

2013



*Last week: Discovered risk factors

Highly weighted features Odds Ratio
Impaired Fasting Glucose (Code 790.21) 4.17 

(3.87 4.49)

Abnormal Glucose NEC (790.29) 4.07 
(3.76 4.41)

Hypertension (401) 3.28 
(3.17 3.39)

Obstructive Sleep Apnea (327.23) 2.98 
(2.78 3.20)

Obesity (278) 2.88 
(2.75 3.02)

Abnormal Blood Chemistry (790.6) 2.49 
(2.36 2.62)

Hyperlipidemia (272.4) 2.45 
(2.37 2.53)

Shortness Of Breath (786.05) 2.09 
(1.99 2.19)

Esophageal Reflux (530.81) 1.85
(1.78 1.93)

Diabetes
1-year gap

Additional Disease Risk 
Factors Include:
Pituitary dwarfism (253.3), 
Hepatomegaly(789.1), Chronic 
Hepatitis C (070.54), Hepatitis 
(573.3), Calcaneal Spur(726.73), 
Thyrotoxicosis without mention 
of goiter(242.90), Sinoatrial
Node dysfunction(427.81), Acute 
frontal sinusitis (461.1 ), 
Hypertrophic and atrophic 
conditions of skin(701.9), 
Irregular menstruation(626.4), …

(Razavian et al., Big Data, 2016)



Thinking about interventions
1. Do highly weighted features suggest avenues for 

preventing onset of diabetes?
• Example: Gastric bypass surgery. Highest negative weight 
(9th most predictive feature)
• What is the mathematical justification for thinking of highly 
weighted features in this way?

2. What happens if the patient did not get diabetes 
because an intervention made in the gap?

• How do we deconvolve effect of interventions from the 
prediction task?

3. Solution is to reframe as causal inference problem:
predict for which patients an intervention will 
reduce chances of getting T2D



Randomized trials vs. 
observational studies

Which treatment works better?
A or B



Randomized controlled trial (RCT)

A A AAAB B BBA B B AB AA

Which treatment works better?
A or B

Socio-economic class WealthyPoor



A A AAB BB

Which treatment works better?
A or B

A BBAAA BA B

Observational study

Socio-economic class WealthyPoor



A A AAB BB

Which treatment works better?
A or B

A BBAAA BA B

Observational study

Socio-economic class 
is a potential 
Confounder

Socio-economic class WealthyPoor



In many fields randomized studies 
are the gold standard for 
causal inference, but…



• Does inhaling Asbestos cause cancer?
• Does decreasing the interest rate 
reinvigorate the economy?

• We have a budget for one new anti-
diabetic drug experiment. Can we use past 
health records of 100,000 diabetics to 
guide us?



Even randomized controlled trials have flaws

• Not personalized – only population effect
• Study population might not represent true 
population
• Recruiting is hard
• People might drop out of study
• Study in one company/hospital/state/country 
could fail to generalize to others



Example 1
Precision medicine:

Individualized Treatment Effect (ITE)



Which treatment is best for me?
• Which anti-hypertensive
treatment?
• Calcium channel blocker (A)
• ACE inhibitor (B)

• Current situation:
• Clinical trials
• Doctor’s knowledge & intuition

• Use datasets of patients and their histories

• Blood pressure = 150/95
• WBC count = 6*109/L
• Temperature = 98°F
• HbA1c = 6.6%
• Thickness of heart artery 

plaque = 3mm
• Weight = 65kg



Which treatment is best for me?
• Which anti-hypertensive
treatment?
• Calcium channel blocker (A)
• ACE inhibitor (B)

• Future blood pressure: treatment A vs. B
• Individualized Treatment Effect (ITE)



Which treatment is best for me?
• Which anti-hypertensive
treatment?
• Calcium channel blocker (A)
• ACE inhibitor (B)

• Potential confounder: maybe rich patients 
got medication A more often, and poor 
patients got medication B more often



Example 2
Job training: 

Average Treatment Effect (ATE)



Should the government fund job-training 
programs?
• Existing job training programs seem to help 
unemployed and underemployed find better 
jobs

• Should the government fund such programs?
• Maybe training helps but only marginally? Is it 
worth the investment? 

• Average Treatment Effect (ATE)
• Potential confounder: Maybe only motivated 
people go to job training? Maybe they would 
have found better jobs anyway?



Observational studies
A major challenge in causal inference from 
observational studies is how to control or
adjust for the confounding factors



Counterfactuals and causal inference
• Does treatment 𝑻 cause outcome 𝒀?
• If 𝑻 had not occurred, 𝒀 would not have 
occurred (David Hume)

• Counterfactuals: 
Kim received job training (𝑻), and her 
income one year later (𝒀) is 20,000$
What would have been Kim’s income had 
she not had job training?



Counterfactuals and causal inference
• Counterfactuals: 
Kim received job training (𝑻), and her 
income one year later (𝒀) is $20,000
What would have been Kim’s income had 
she not had job training?

• If her income would have been $18,000, we 
say that job training caused an increase of 
$2,000 in Kim’s income

• The problem: you never know what might 
have been



Sliding Doors



Potential Outcomes Framework
(Rubin-Neyman Causal Model)

• Each unit 𝑥& has two potential outcomes: 
• 𝑌((𝑥&) is the potential outcome had the unit not been 
treated: “control outcome”

• 𝑌)(𝑥&) is the potential outcome had the unit been 
treated: “treated outcome”

• Individual Treatment Effect for unit 𝑖: 
𝐼𝑇𝐸 𝑥& = 𝔼01~3(01|56)	[𝑌)|𝑥&] − 𝔼0;~3(0;|56)[𝑌(|𝑥&]

• Average Treatment Effect:
𝐴𝑇𝐸:= 𝔼 𝑌) − 𝑌( = 	𝔼5~3(5) 𝐼𝑇𝐸 𝑥



Potential Outcomes Framework
(Rubin-Neyman Causal Model)

• Each unit 𝑥& has two potential outcomes: 
• 𝑌((𝑥&) is the potential outcome had the unit not been 
treated: “control outcome”

• 𝑌)(𝑥&) is the potential outcome had the unit been 
treated: “treated outcome”

• Observed factual outcome: 
𝑦& = 𝑡&𝑌) 𝑥& + 1 − 𝑡& 𝑌((𝑥&)

• Unobserved counterfactual outcome: 
𝑦&BC = (1 − 𝑡&)𝑌) 𝑥& + 𝑡&𝑌((𝑥&)



Terminology
• Unit: data point, e.g. patient, customer, student
• Treatment: binary indicator (in this tutorial)
Also called intervention

• Treated: units who received treatment=1
• Control: units who received treatment=0
• Factual: the set of observed units with their 
respective treatment assignment

• Counterfactual: the factual set with flipped 
treatment assignment 



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥

Example – Blood pressure and age



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥

Blood pressure and age

𝐼𝑇𝐸(𝑥)



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥

Blood pressure and age

𝐴𝑇𝐸



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥

Blood pressure and age

Treated

Control



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥

Blood pressure and age

Treated

Control

Counterfactual treated
Counterfactual control



The	fundamental	problem	of	causal	inference“The fundamental problem of 
causal inference”

We only ever observe one of 
the two outcomes



“The Assumptions” – no unmeasured confounders

𝑌(, 𝑌): potential outcomes for control and treated
𝑥: unit covariates (features)
T: treatment assignment

We assume:
(𝑌(, 𝑌)) ⫫ 𝑇	|	𝑥	

The potential outcomes are independent of 
treatment assignment, conditioned on covariates 𝑥



“The Assumptions” – no unmeasured confounders

𝑌(, 𝑌): potential outcomes for control and treated
𝑥: unit covariates (features)
T: treatment assignment

We assume:
(𝑌(, 𝑌)) ⫫ 𝑇	|	𝑥	

Ignorability



covariates
(features)

treatment

Potential outcomes

𝑻𝒙

𝒀𝟏𝒀𝟎

Ignorability

(𝑌(, 𝑌)) ⫫ 𝑇	|	𝑥	



𝑻𝒙

𝒀𝟏𝒀𝟎

anti-
hypertensive 
medication

blood pressure
after 
medication A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B

Ignorability

(𝑌(, 𝑌)) ⫫ 𝑇	|	𝑥	



𝒙

𝒀𝟏𝒀𝟎blood pressure
after 
medication A

age, gender, 
weight, diet, 
heart rate at 
rest,…

blood pressure
after  
medication B

𝒉

No Ignorability

diabetic𝑻

anti-
hypertensive 
medication

(𝑌(, 𝑌)) ⫫ 𝑇	|	𝑥	



“The Assumptions” – common support

Y(, 𝑌): potential outcomes for control and treated
𝑥: unit covariates (features)
𝑇: treatment assignment

We assume:
𝑝 𝑇 = 𝑡 𝑋 = 𝑥 > 0	∀𝑡, 𝑥



Average Treatment Effect
The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]



Average Treatment Effect –
the adjustment formula
• Assuming ignorability, we will derive the 
adjustment formula (Hernán & Robins 
2010, Pearl 2009)

• The adjustment formula is extremely useful 
in causal inference

• Also called G-formula



Average Treatment Effect
The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]



Average Treatment Effect
The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y1] =

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x]

⇤
=

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y1|x, T = 1]]

law of total 
expectation



Average Treatment Effect
The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y1] =

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x]

⇤
=

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y1|x, T = 1]]

ignorability
(𝑌(, 𝑌)) ⫫ 𝑇	|	𝑥	



Average Treatment Effect
The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y1] =

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x]

⇤
=

E
x⇠p(x)

⇥
E
Y1⇠p(Y1|x) [Y1|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y1|x, T = 1]] shorter 

notation



Average Treatment Effect
The expected causal effect of 𝑇 on 𝑌: 
ATE := E [Y1 � Y0]

E [Y0] =

E
x⇠p(x)

⇥
E
Y0⇠p(Y0|x) [Y0|x]

⇤
=

E
x⇠p(x)

⇥
E
Y0⇠p(Y0|x) [Y0|x, T = 1]

⇤
=

E
x⇠p(x) [E [Y0|x, T = 0]]



Quantities we 
can estimate 

from data

The adjustment formula
(

E[Y1|x,T=1]

E[Y0|x,T=0](
E [Y1|x, T = 1]

E [Y0|x, T = 0]

ATE = E [Y1 � Y0] =

E
x⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Under the assumption of ignorability, we 
have that:



Quantities we 
cannot directly

estimate from data

The adjustment formula
(

E[Y1|x,T=1]

E[Y0|x,T=0]
ATE = E [Y1 � Y0] =

E
x⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Under the assumption of ignorability, we 
have that:

E [Y0|x, T = 1]

E [Y1|x, T = 0]

E [Y0|x]
E [Y1|x]



Quantities we 
can estimate 

from data

The adjustment formula
(

E[Y1|x,T=1]

E[Y0|x,T=0](
E [Y1|x, T = 1]

E [Y0|x, T = 0]

ATE = E [Y1 � Y0] =

E
x⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

Empirically we have samples from 𝑝(𝑥|𝑇 = 1) or 𝑝 𝑥 𝑇 = 0 . 
Extrapolate to 𝑝(𝑥)

Under the assumption of ignorability, we 
have that:



Outline
Tools of the trade

Matching
Covariate adjustment 
Propensity score



Set up
• Samples: 𝑥), 𝑥[, … , 𝑥]
• Observed binary treatment assignments: 
𝑡), 𝑡[, … , 𝑡]

• Observed outcomes: 𝑦), 𝑦[, … , 𝑦]
𝑥 = (𝑎𝑔𝑒, 𝑔𝑒𝑛𝑑𝑒𝑟,𝑚𝑎𝑟𝑟𝑖𝑒𝑑, 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛,
𝑖𝑛𝑐𝑜𝑚𝑒_𝑙𝑎𝑠𝑡_𝑦𝑒𝑎𝑟, … )
𝑡 = 𝑛𝑜_𝑗𝑜𝑏_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔, 𝑗𝑜𝑏_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔
𝑦 = 𝑖𝑛𝑐𝑜𝑚𝑒_𝑜𝑛𝑒_𝑦𝑒𝑎𝑟_𝑎𝑓𝑡𝑒𝑟_𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔

• Does job training raise average future income?



Outline
Tools of the trade

Matching
Covariate adjustment 
Propensity score



Matching
• Find each unit’s long-lost counterfactual 
identical twin, check up on his outcome



Matching
• Find each unit’s long-lost counterfactual 
identical twin, check up on his outcome

Obama, had he gone to law school Obama, had he gone to business school



Matching
• Find each unit’s long-lost counterfactual 
identical twin, check up on his outcome

• Used for estimating both ATE and ITE



Match to nearest neighbor from opposite 
group

Treated

Control age

years of 
education



Match to nearest neighbor from opposite 
group

Treated

Control age

years of 
education



1-NN Matching
• Let 𝑑 ⋅,⋅ be a metric between 𝑥’s
• For each 𝑖, define 𝑗 𝑖 = argmin	

k	l.m.		mnom6	
𝑑(𝑥k, 𝑥&)

𝑗 𝑖 is the nearest counterfactual neighbor of 𝑖
• 𝑡& = 1, unit 𝑖 is treated:

𝐼𝑇𝐸p 𝑥& = 𝑦& − 𝑦k &
• 𝑡& =0, unit 𝑖 is control:

𝐼𝑇𝐸p 𝑥& = 𝑦k(&) − 𝑦&



1-NN Matching
• Let 𝑑 ⋅,⋅ be a metric between 𝑥’s
• For each 𝑖, define 𝑗 𝑖 = argmin	

k	l.m.		mnom6	
𝑑(𝑥k, 𝑥&)

𝑗 𝑖 is the nearest counterfactual neighbor of 𝑖

• 𝐼𝑇𝐸p 𝑥& = (2𝑡& − 1)(𝑦&−𝑦k & )

•𝐴𝑇𝐸r = )
]
∑ 𝐼𝑇𝐸p 𝑥&]
&t)



Matching
• Interpretable, especially in small-sample 
regime

• Nonparametric
• Heavily reliant on the underlying metric
(however see below about propensity score 
matching)

• Could be misled by features which don’t 
affect the outcome



Matching
• Many other matching methods we won’t 
discuss:
• Coarsened exact matching

Iacus et al. (2011)
• Optimal matching

Rosenbaum (1989,2002)
• Propensity score matching

Rosenbaum & Rubin (1983), Austin (2011)
• Mahalanobis distance matching

Rosenbaum (1989,2002)



Outline
Tools of the trade

Matching
Covariate adjustment
Propensity score



Covariate adjustment
• Explicitly model the relationship between 
treatment, confounders, and outcome

• Also called “Response Surface Modeling”
• Used for both ITE and ATE
• A regression problem



𝑥)

𝑥[

𝑥u

𝑇

… 𝑓(𝑥, 𝑇)

𝑦

Regression 
model

OutcomeCovariates
(Features)



𝑥)

𝑥[

𝑥u

𝑇

…

𝑦

Nuisance 
Parameters

Regression 
model

Outcome

Parameter of 
interest

𝑓(𝑥, 𝑇)



Covariate adjustment 
(parametric g-formula)
• Explicitly model the relationship between 
treatment, confounders, and outcome

• Under ignorability, the expected causal 
effect of 𝑇 on 𝑌:
𝔼5~3 5 	𝔼 𝑌) 𝑇 = 1, 𝑥 − 𝔼 𝑌( 𝑇 = 0, 𝑥

• Fit a model 𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌m 𝑇 = 𝑡, 𝑥

𝐴𝑇𝐸r =
1
𝑛
w𝑓 𝑥&, 1 − 𝑓(𝑥&, 0)
]

&t)



Covariate adjustment 
(parametric g-formula)
• Explicitly model the relationship between 
treatment, confounders, and outcome

• Under ignorability, the expected causal 
effect of 𝑇 on 𝑌:
𝔼5~3 5 	𝔼 𝑌) 𝑇 = 1, 𝑥 − 𝔼 𝑌( 𝑇 = 0, 𝑥

• Fit a model 𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌m 𝑇 = 𝑡, 𝑥

𝐼𝑇𝐸p 𝑥& = 𝑓 𝑥&, 1 − 𝑓(𝑥&, 0)



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥

Covariate adjustment

Treated

Control



Treated

𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥

Covariate adjustment

Treated

Control

Counterfactual treated
Counterfactual control

𝒇



• Our model was optimized to predict 
outcome, not to differentiate the influence 
of A vs. B

• What if our high-dimensional model threw 
away the feature of medication A/B?

• Maybe the model never saw a patient like 
Anna get medication A? Maybe there’s a 
reason patients like Anna never get A?

Warning: this is not a classic supervised 
learning problem



Covariate adjustment - consistency

• If the model 𝑓 𝑥, 𝑡 ≈ 𝔼 𝑌m 𝑇 = 𝑡, 𝑥 is 
consistent in the limit of infinite samples, 
then under ignorability the estimated 𝐴𝑇𝐸r
will converge to the true 𝐴𝑇𝐸

• A sufficient condition: overlap and well-
specified model



Covariate adjustment: no overlap

TreatedTreated

Control 𝑥 = 𝑎𝑔𝑒

𝑦 =
𝑏𝑙𝑜𝑜𝑑_𝑝𝑟𝑒𝑠.

𝑌) 𝑥

𝑌( 𝑥



Linear model
• Assume that:

	

• Then:
𝐼𝑇𝐸(𝑥):= 𝑌) 𝑥 − 𝑌( 𝑥 =
(𝛽𝑥	 + 𝛾 + 𝜖)) − 𝛽𝑥 + 𝜖( = 	𝛾 + 𝜖) − 𝜖(
	

age medication

𝐴𝑇𝐸:= 𝔼 𝑌) 𝑥 	− 𝑌( 𝑥 = 𝛾𝐴𝑇𝐸:= 𝔼 𝑌) 𝑥 	− 𝑌( 𝑥 = 𝛾 + 𝔼[𝜖)] − 𝔼[𝜖(]

Blood pressure

𝑌m 𝑥 = 	𝛽𝑥	 + 𝛾 ⋅ 𝑡 + 𝜖m
𝔼 𝜖m = 0



Linear model
• Assume that:

	

• We care about 𝛾, not about 𝑌m 𝑥
Identification, not prediction

	

	𝐴𝑇𝐸 = 𝔼 𝑌) 𝑥 	− 𝑌( 𝑥 = 𝛾

𝑌m 𝑥 = 	𝛽|𝑥	 + 𝛾 ⋅ 𝑡 + 𝜖m	
𝔼 𝜖m = 0



Linear model

•𝑌m 𝑥 = 	𝛽|𝑥				 + 				𝛾 ⋅ 𝑡 + 𝜖m	
Hypertension is affected by many variables:
lifestyle, weight, genetics, age

• Each of these often stronger predictor of 
blood-pressure, compared with type of 
medication taken

• Regularization (e.g. Lasso) might remove 
the treatment variable! 

• Features à (“nuisance parameters”, 
“variable of interest”)

age,weight,… medicationblood pressure



Regression - misspecification
• True data generating process, 𝑥 ∈ ℝ:

𝐴𝑇𝐸 = 𝔼 𝑌) − 𝑌( = 𝛾
• Hypothesized model:

	

𝑌m 𝑥 = 	𝛽𝑥	 + 𝛾 ⋅ 𝑡 + 𝛿 ⋅ 𝑥[

𝑌m� 𝑥 = 𝛽�𝑥 + 𝛾� ⋅ 𝑡

𝛾� = 𝛾 + 𝛿
𝔼 𝑥𝑡 𝔼 𝑥[ − 𝔼[𝑡[]𝔼[𝑥[𝑡]
𝔼 𝑥𝑡 [ − 𝔼[𝑥[]𝔼[𝑡[]



Using machine learning for causal 
inference
• Machine learning techniques can be very 
useful and have recently seen wider adoption

• Random forests and Bayesian trees 
Hill (2011), Athey & Imbens (2015), Wager & Athey (2015)

• Gaussian processes 
Hoyer et al. (2009), Zigler et al. (2012)

• Neural nets
Beck et al. (2000), Johansson et al. (2016), Shalit et al. 
(2016), Lopez-Paz et al. (2016)

• “Causal” Lasso
Belloni et al. (2013), Farrell (2015), Athey et al. (2016)



• Machine learning techniques can be very 
useful and have recently seen wider adoption

• How is the treatment variable used:
• Fit two different models for treated and control?
• Not regularized?
• Privileged 

Using machine learning for causal 
inference



Example: Gaussian process
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Figures: Vincent Dorie & Jennifer Hill

Separate treated 
and control models

Joint treated and 
control model

𝑌) 𝑥

𝑌( 𝑥

𝑌) 𝑥

𝑌( 𝑥

𝑥𝑥

𝑦

Treated
Control 𝑌( 𝑥

𝑌�m(𝑥)
𝑌) 𝑥



Covariate adjustment and matching
• Matching is equivalent to covariate 
adjustment with two 1-NN classifiers:
𝑌�) 𝑥 = 𝑦��1 5 	, 𝑌�( 𝑥 = 𝑦��; 5
where 𝑦��� 5 is the nearest-neighbor of 𝑥
among units with treatment assignment

𝑡 = 0,1
• 1-NN matching is in general inconsistent, 
though only with small bias (Imbens 2004) 



Outline
Tools of the trade

Matching
Covariate adjustment 
Propensity score



Propensity score
• Tool for estimating ATE
• Basic idea: turn observational study into a 
pseudo-randomized trial by re-weighting 
samples, similar to importance sampling



𝑝 𝑥 𝑡 = 0 ⋅ 𝑤((𝑥) ≈ 𝑝 𝑥 𝑡 = 1 ⋅ 𝑤)(𝑥)
reweighted control     reweighted treated

Inverse propensity score re-weighting

𝑥) = 𝑎𝑔𝑒

𝑥[ =
𝑖𝑛𝑐𝑜𝑚𝑒

Treated

Control

𝑝(𝑥|𝑡 = 0) ≠ 𝑝 𝑥 𝑡 = 1
control          treated



Propensity score

• Propensity score: 𝑝 𝑇 = 1 𝑥 ,
using machine learning tools

• Samples re-weighted by the inverse 
propensity score of the treatment they 
received



How to obtain ATE with propensity score



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥), 𝑡), 𝑦) , … , (𝑥], 𝑡], 𝑦])

1. Use any ML method to estimate 𝑝� 𝑇 = 𝑡 𝑥

2. ˆ
ATE =

1

n

X

i s.t. ti=1

yi

p̂(ti = 1|xi)
� 1

n

X

i s.t. ti=0

yi

p̂(ti = 0|xi)



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥), 𝑡), 𝑦) , … , (𝑥], 𝑡], 𝑦])

1. Randomized trial 𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆ
ATE =

1

n

X

i s.t. ti=1

yi

p̂(ti = 1|xi)
� 1

n

X

i s.t. ti=0

yi

p̂(ti = 0|xi)



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥), 𝑡), 𝑦) , … , (𝑥], 𝑡], 𝑦])

1. Randomized trial 𝑝(𝑇 = 𝑡|𝑥) = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi



Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥), 𝑡), 𝑦) , … , (𝑥], 𝑡], 𝑦])

1. Randomized trial 𝑝 = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0
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=
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Propensity scores – algorithm
Inverse probability of treatment weighted estimator

How to calculate ATE with propensity score
for sample 𝑥), 𝑡), 𝑦) , … , (𝑥], 𝑡], 𝑦])

1. Randomized trial 𝑝 = 0.5

2. ˆATE =
1

n

X

i s.t. ti=1

yi
0.5

� 1

n

X

i s.t. ti=0

yi
0.5

=

2

n

X

i s.t. ti=1

yi �
2

n

X

i s.t. ti=0

yi

Sum over ~𝒏
𝟐

terms



Propensity scores - derivation
• Recall average treatment effect:

• We only have samples for:

E
x⇠p(x)[ E [Y1|x, T = 1]�E [Y0|x, T = 0] ]

E
x⇠p(x|T=1)[ E [Y1|x, T = 1]]

E
x⇠p(x|T=0)[ E [Y0|x, T = 0]]



Propensity scores - derivation
• We only have samples for:

E
x⇠p(x|T=1)[ E [Y1|x, T = 1]]

E
x⇠p(x|T=0)[ E [Y0|x, T = 0]]



Propensity scores - derivation
• We only have samples for:

• We need to turn 𝑝(𝑥|𝑇 = 1) into 𝑝(𝑥):

E
x⇠p(x|T=1)[ E [Y1|x, T = 1]]

E
x⇠p(x|T=0)[ E [Y0|x, T = 0]]

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)?



Propensity scores - derivation
• We only have samples for:

• We need to turn 𝑝(𝑥|𝑇 = 1) into 𝑝(𝑥):

E
x⇠p(x|T=1)[ E [Y1|x, T = 1]]

E
x⇠p(x|T=0)[ E [Y0|x, T = 0]]

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)

Propensity score



Propensity scores - derivation
• We only have samples for:

• We need to turn 𝑝(𝑥|𝑇 = 0) into 𝑝(𝑥):

E
x⇠p(x|T=1)[ E [Y1|x, T = 1]]

E
x⇠p(x|T=0)[ E [Y0|x, T = 0]]

p(x|T = 0) · p(T = 0)

p(T = 0|x) = p(x)

Propensity score



• We only have samples for:

• We want:

• We know that:

• Then:

E
x⇠p(x|T=1)[ E [Y1|x, T = 1]]

E
x⇠p(x|T=0)[ E [Y0|x, T = 0]]

p(x|T = 1) · p(T = 1)

p(T = 1|x) = p(x)

E
x⇠p(x|T=1)


p(T = 1)

p(T = 1|x)E [Y1|x, T = 1]

�
=

E
x⇠p(x) [E [Y1|x, T = 1]]

E
x⇠p(x|T=1)


p(T = 1)

p(T = 1|x)E [Y1|x, T = 1]

�
=

E
x⇠p(x) [E [Y1|x, T = 1]]



Calculating the propensity score
• If 𝑝(𝑇 = 𝑡|𝑥) is known, then propensity scores 
re-weighting is consistent

• Example: ad-placement algorithm samples 𝑇 = 𝑡
based on a known algorithm

• Usually the score is unknown and must be 
estimated

• Example: use logistic regression to estimate the 
probability that patient 𝑥 received medication 𝑇 = 𝑡

• Calibration: must estimate the probability correctly, 
not just the binary assignment variable



“The Assumptions” –
ignorability
• If ignorability doesn’t hold then the average 
treatment effect is not
𝔼5~3 5 𝔼 𝑌) 𝑇 = 1, 𝑥 − 𝔼 𝑌( 𝑇 = 0, 𝑥 ,
invalidating the starting point of the 
derivation



“The Assumptions” – overlap

• If there’s not much overlap, propensity scores 
become non-informative and easily 
miscalibrated

• Sample variance of inverse propensity score 
re-weighting scales with ∑ )

3�(|t)|56)3�(|t(|56)
]
&t) , 

which can grow very large when samples are 
non-overlapping
(Williamson et al., 2014)



Propensity score in machine learning
• Same idea is in importance sampling!
• Used in off-policy evaluation and learning 
from logged bandit feedback 
(Swaminathan & Joachims, 2015)

• Similar ideas used in covariate shift work
(Bickel et al., 2009)


