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Outline for today’s class

- Finding optimal treatment policies

“Reinforcement learning” / “dynamic treatment regimes”
What makes this hard?

- Q-learning (Watkins '89)

- Fitted Q-iteration (Ernst et al. ’05)

Application to schizophrenia (Shortreed et al., 11)
Deep Q-networks for playing Atari games (Mnih et al. “15)



Previous Lectures

- Supervised learning
- classification, regression

- Unsupervised learning
- clustering

- Reinforcement learning

- more general than supervised/unsupervised learning
- learn from interaction w/ environment to achieve a goal

reward action
new state

[Slide from Peter Bodik]



Finding optimal treatment policies

Health
interventions
[ treatments

True state
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Prescribe insulin and
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Temperature = 98°F
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Finding optimal treatment policies

Health
interventions
[ treatments

True state

Prescribe insulin and

Metformin

Prescribe statin

How to optimize the treatment policy?

Blood pressure = 150
WBC count = 6.8*109
Temperature = 98°F
Alc=7.7%

ICD9 = Diabetes

What the
health
system sees

Blood pressure = 135
Temperature = 99°F



I
Key challenges

1. Only have observational data to learn policies from

At least as hard as causal inference
Reduction: just 1 treatment & time-step

2. Have to define outcome that we want to optimize
(reward function)

3. Input data can be high-dimensional, noisy, and
iIncomplete

4. Must disentangle (possibly long-term) effects of
sequential actions and confounders - credit
assignment problem



Robot in a room

+1

START

- reward +1 at [4,3], -1 at [4,2]
- reward -0.04 for each step

actions: UP, DOWN, LEFT, RIGHT

UP
80% move UP '
10% move LEFT

10% move RIGHT

- what's the strategy to achieve max reward?
- what if the actions were deterministic?

[Slide from Peter Bodik]



Robot in a room

+1
START
- states
- actions
- rewards

what is the solution?

actions: UP, DOWN, LEFT, RIGHT
UP

80% move UP

10% move LEFT

10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

[Slide from Peter Bodik]



|s this a solution?
A A A

4 -1
1

- only if actions deterministic
- notin this case (actions are stochastic)

- solution/policy
- mapping from each state to an action

[Slide from Peter Bodik]
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[Slide from Peter Bodik]
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[Slide from Peter Bodik]
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Outline for today’s class

- Finding optimal treatment policies

“Reinforcement learning” / “dynamic treatment regimes”
What makes this hard?

- Q-learning (Watkins ’89)

- Fitted Q-iteration (Ernst et al. ’05)

Application to schizophrenia (Shortreed et al., 11)
Deep Q-networks for playing Atari games (Mnih et al. “15)



Markov Decision Process (MDP)

- set of states S, set of actions A, initial state S,
- transition model P(s,a,s’) = P(si.1 =8’ | s{= s, a;=a)

- P([1,1], up, [1,2] )= 0.8 environment
- reward function r(s) reward Q ) action
c 1([4,3]) = +1 new state agent

- goal: maximize cumulative reward in the long run

- policy: mapping from S to A
- 7(s) orn(s,a) (deterministic vs. stochastic)

- reinforcement learning
- transitions and rewards usually not available
- how to change the policy based on experience
- how to explore the environment

[Slide from Peter Bodik]



State representation

- pole-balancing
- move car left/right to keep the pole balanced

- state representation
- position and velocity of car
- angle and angular velocity of pole

- what about Markov property?
- would need more info
- noise in sensors, temperature, bending of pole

- solution

- coarse discretization of 4 state variables
- left, center, right

- totally non-Markov, but still works

[Slide from Peter Bodik]



Designing rewards

robot in a maze
- episodic task, not discounted, +1 when out, 0 for each step

chess
- GOOQOD: +1 for winning, -1 losing

- BAD: +0.25 for taking opponent’s pieces
- high reward even when lose

rewards
- rewards indicate what we want to accomplish
- NOT how we want to accomplishiit

shaping 0000000001
- positive reward often very “far away”
- rewards for achieving subgoals (domain knowledge)
- also: adjust initial policy or initial value function

[Slide from Peter Bodik]



Computing return from rewards

- episodic (vs. continuing) tasks
- “game over” after N steps
- optimal policy depends on N; harder to analyze

- additive rewards
* V(so, S1, ...) = 1(Sp) + r(sq) +r(sz) + ...
- infinite value for continuing tasks

- discounted rewards
* V(sq, 81, ...) = 1(Sg) + Y*r(S1) + Y2'r(sp) + ...
- value bounded if rewards bounded

[Slide from Peter Bodik]



Finding optimal policy using value iteration

- state value function: V*(s)

- expected return when starting in s and following «t
- optimal policy n* has property:

- Learn using fixed point iteration:
Vig1(s) = max > P, [rdy + yVi(s))]

- Equivalent formulation uses state-action value function:

Q™ (s,a) =715 o+ YV (s") V™(s) = max Q" (s, a)
(expected return when starting in s, performing a, and following =)

Qk—l—l(S? a) — Z Psas’ [Tg,s’ + vmz}x Qk(sla CI,/)] 7"-*(5) = argd maax Q*(Sa a’)

8/



Q-learning

- Same as value iteration, but rather than assume Pr(s’ | s, a)
is known, estimate it from data (i.e. episodes)

- Input: sequences/episodes from some behavior policy

s a,r s’

S
0000000000000

| m—— —— o — e a
o000 00— 00— 0—0—0—0—0—0— r

- Combine data from all episodes into a set of n tuples
(n = # episodes * length of each): {(s,a,s)}

- Use these to get empirical estimate 72, and use this instead

- In reinforcement learning, episodes are created as we go,
using current policy + randomness for exploration



I
Where can Q-learning be used?

- need complete model of the environment and
rewards

- robot in a room
- state space, action space, transition model

- can we use DP to solve
- robot in a room?
- back gammon, or Go?
- helicopter?
- optimal treatment trajectories?

[Slide from Peter Bodik]



Outline for today’s class

- Finding optimal treatment policies

“Reinforcement learning” / “dynamic treatment regimes”
What makes this hard?
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-
Fitted Q-iteration

- Challenge: in infinite or very large state spaces, very
difficult to estimate Pr(s’ | s, a)

- Moreover, this is a harder problem than we need to solve!
- We only need to learn how to act

- Can we learn the Q function directly, i.e. a mapping from s,a to
expected cumulative reward? (“model-free” RL)

- Reduction to supervised machine learning (exactly the same as we
did in causal inference using regression)

- Input is the same: sequences/episodes from some

behavior policy: oo e
0000000000000
o—0—0—1—0—0—0—2—0—720—0—10—0—20—0——

- First let’s create a dataset = {(y, a7 570, n=1,...,|F} and
learn Q(st,ar) = 41



-
Fitted Q-iteration

- First let’s create a dataset 7 = {(s}.ap). 70 s10).n = 1,171} and
learn Q(s¢. a:) — rip
- Trick: to predict the cumulative reward, we iterate this

process
- Initialize Qo(st, a;') = "t++1 USING s GOAL: extrapolate to
- For k=1, ... actions other than a"; (i.e.,

.. : compute counterfactuals
1. Create training set for k" learning problem: g )

T‘Sk — {((S?,CL?% Qk—l(sgv CL?)), V<S?, CL?> S ‘F}
Use supervised learning to estimate function Qx—1(s,af) from 7Sk

3. Update Q values for each observed tuple in / using Bellman

equation: N . . ,
Qr(sy,ay) = Tih1 T ’ymczlxx Qk—1(3t+1a a)]



Example of Q-iteration

Adaptive treatment strategy for treating psychiatric
disorders

Initial 2Month Initial Second Second Final Figure 2 A comparison of two strategies. The strategy beginning with
Treatment Outcome Response Treatment Response Status medication A has an overall remission rate at 4 months of 58% (16 +42%).
The strategy beginning with medication B has an overall remission rate at

60% Nonremission 24% 4 months of 65% (25 + 40%). Medication A is best if considered as a stand-

/ Non- alone treatment, but medication B is best initially when considered as part
remission of a sequence of treatments.
\> 6%

40% No Response

40% Remission Remission

30% Nonremission 18%

/ Non-

60% Some @ remission
Response

\ 49%

70% Remission Remission

50% Nonremission 25%

Non-
remission

50% No Response .
25%
50% Remlsswn Remission
‘ 20% Nonremission 10%
\ Non-
50% remission

Some

Response ‘ \
80% Remission 40%

Remission

[Murphy et al., Neuropsychopharmacology, 2007]



Example of Q-iteration

- Goal: minimize average level of depression over 4-month
period; only 2 decisions (initial and second treatment)

- Y, = summary of depression weeks 9 through 12
- Sg = summary of side-effects up to end of 8t week
- First, regress onto Y, using:

Bo + B1Ss + (B, + B3Ss) T

learn decision rule that recommends switching treatment
for patient if .+ f3Ss is less than zero

- Then consider initial decision T, regressing on
Y1 + min(Bo+ B1Ss+ (B2+ B3Ss), fo+ B1Ss )

[Murphy et al., Neuropsychopharmacology, 2007]



Empirical study for schizophrenia

- Clinical Antipsychotic Trials of Intervention Effectiveness:
18 month multistage clinical trial of 1460 patients with
schizophrenia — 2 stages

- Subjects randomly given a stage 1 treatment: olanzapine,
risperidone, quetiapine, ziprasidone, and perphenazine
- Followed for up to 18 months; allowed to switch treatment
iIf original was not effective:
- Lack of efficacy (i.e., symptoms still high)
- Lack of tolerability (i.e., side-effects large)
- Data recorded every 3 months (i.e., 6 time points)
- Reward at each time point: (negative) PANSS score (low
PANSS score = few psychotic symptoms)
[Shortreed et al.,, Mach Learn, 2011]




Empirical study for schizophrenia

Missing PANSS Scores in CATIE

§ - E Missing due to drop out

= O Item missingness

S Most of the
e = missing data
§ - is due to
2 5] people dropping
s ii out of study
£ 8 prior to that month
| i i i

= E i 6 9 12 15 18

Month of visit

[Shortreed et al.,, Mach Learn, 2011]



Empirical study for schizophrenia

- Data pre-processing:
- Multiple imputation for the features (i.e. state)
- Bayesian mixed effects model for PANSS score (i.e. reward)

- Fitted Q-iteration performed using linear regression

- Different weight vector for each action (allows for nonlinear
relationship between state and action)

- Different weight vectors for each of the two time points

- Weight sharing for variables not believed to be action specific but
just helpful for estimating Q—function (e.g., tardive dyskinesia,
recent psychotic episode, clinic site type)

- Bootstrap voting to get confidence intervals for treatment
effects

[Shortreed et al.,, Mach Learn, 2011]



Empirical study for schizophrenia

- Optimal treatment policy:

Give
olanzapine

!

Lack of %&asm Lack of
Efficacy W Tolerability
PANSS Score PANSS Score

Give . . :
risperidone or ng . G“.'e G.'Ve.
quetiapine clozapine risperidone quetiapine

[Shortreed et al.,, Mach Learn, 2011]



Empirical study for schizophrenia

- Stage 1 stage-action value-function:
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[Shortreed et al., Mach

50 65 75 85 100 Learn. 2011 ]
PANSS score entry into CATIE ’




Empirical study for schizophrenia

AUC PANSS Phase 2

- Stage 2 stage-action value-function:
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[Shortreed et
al., Mach
Learn, 2011]



Measuring convergence in fitted Q-
iteration

12 —— FQI w/ Extra-Trees
- Neural Fitted-Q
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0 20 Al (= 0] B0 100
lteration Number k

[Prasad et al., 2017]



Playing Atari with deep reinforcement
learning

Game "Breakout”: control paddle at bottom to break all bricks in upper half of screen

- Do fitted Q-iteration using deep convolutional neural networks to model the
Q function

- Use eps-greedy algorithm to perform exploration
- Infinite time horizon

[Mnih et al., 2015]



