
MACHINE LEARNING FOR 
HEALTHCARE
6.S897, HST.S53

Prof. David Sontag
MIT EECS, CSAIL, IMES

(Thanks to Peter Bodik for slides on reinforcement learning)

Lecture 13: Finding optimal treatment 
policies



Outline for today’s class

• Finding optimal treatment policies
• “Reinforcement learning” / “dynamic treatment regimes”
• What makes this hard?

• Q-learning (Watkins ’89)
• Fitted Q-iteration (Ernst et al. ’05)

• Application to schizophrenia (Shortreed et al., 11)
• Deep Q-networks for playing Atari games (Mnih et al. ‘15)



Previous Lectures
• Supervised learning

• classification, regression

• Unsupervised learning
• clustering

• Reinforcement learning
• more general than supervised/unsupervised learning
• learn from interaction w/ environment to achieve a goal

environment

agent
actionreward

new state

[Slide from Peter Bodik]



Finding optimal treatment policies

True state …..

What the 
health 
system sees

Blood pressure = 150
WBC count = 6.8*109/L
Temperature = 98°F
A1c = 7.7%
ICD9 = Diabetes

Blood pressure = 135
Temperature = 99°F

?

Health 
interventions 
/ treatments

Prescribe insulin and 
Metformin

Prescribe statin 



Finding optimal treatment policies

True state …..

What the 
health 
system sees

Blood pressure = 150
WBC count = 6.8*109/L
Temperature = 98°F
A1c = 7.7%
ICD9 = Diabetes

Blood pressure = 135
Temperature = 99°F
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Metformin

Prescribe statin 

How to optimize the treatment policy?



Key challenges
1. Only have observational data to learn policies from

• At least as hard as causal inference
• Reduction: just 1 treatment & time-step

2. Have to define outcome that we want to optimize 
(reward function)

3. Input data can be high-dimensional, noisy, and 
incomplete

4. Must disentangle (possibly long-term) effects of 
sequential actions and confounders à credit 
assignment problem



Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

• reward +1 at [4,3], -1 at [4,2]
• reward -0.04 for each step

• what’s the strategy to achieve max reward?
• what if the actions were deterministic?

[Slide from Peter Bodik]



Robot in a room
+1

-1

START

actions: UP, DOWN, LEFT, RIGHT

UP

80% move UP
10% move LEFT
10% move RIGHT

reward +1 at [4,3], -1 at [4,2]
reward -0.04 for each step

• states
• actions
• rewards

• what is the solution?

[Slide from Peter Bodik]



Is this a solution?
+1

-1

• only if actions deterministic
• not in this case (actions are stochastic)

• solution/policy
• mapping from each state to an action

[Slide from Peter Bodik]



Optimal policy
+1

-1

[Slide from Peter Bodik]



Reward for each step: -2
+1

-1

[Slide from Peter Bodik]



Reward for each step: -0.1
+1

-1
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Reward for each step: -0.04
+1

-1
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Reward for each step: -0.01
+1

-1
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Reward for each step: ???
+1

-1
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Reward for each step: +0.01
+1

-1

[Slide from Peter Bodik]



Outline for today’s class

• Finding optimal treatment policies
• “Reinforcement learning” / “dynamic treatment regimes”
• What makes this hard?

• Q-learning (Watkins ’89)
• Fitted Q-iteration (Ernst et al. ’05)

• Application to schizophrenia (Shortreed et al., 11)
• Deep Q-networks for playing Atari games (Mnih et al. ‘15)



Markov Decision Process (MDP)
• set of states S, set of actions A, initial state S0

• transition model P(s,a,s’) = P(st+1 = s’ | st = s, at=a)
• P( [1,1], up, [1,2] ) = 0.8

• reward function r(s)
• r( [4,3] ) = +1

• goal: maximize cumulative reward in the long run

• policy: mapping from S to A
• p(s) or p(s,a) (deterministic vs. stochastic)

• reinforcement learning
• transitions and rewards usually not available
• how to change the policy based on experience
• how to explore the environment

environment

agent
actionreward

new state

[Slide from Peter Bodik]



State representation
• pole-balancing

• move car left/right to keep the pole balanced

• state representation
• position and velocity of car
• angle and angular velocity of pole

• what about Markov property? 
• would need more info
• noise in sensors, temperature, bending of pole

• solution
• coarse discretization of 4 state variables

• left, center, right
• totally non-Markov, but still works

[Slide from Peter Bodik]



Designing rewards
• robot in a maze

• episodic task, not discounted, +1 when out, 0 for each step

• chess
• GOOD: +1 for winning, -1 losing
• BAD: +0.25 for taking opponent’s pieces

• high reward even when lose

• rewards
• rewards indicate what we want to accomplish
• NOT how we want to accomplish it

• shaping
• positive reward often very “far away”
• rewards for achieving subgoals (domain knowledge)
• also: adjust initial policy or initial value function

[Slide from Peter Bodik]



Computing return from rewards
• episodic (vs. continuing) tasks

• “game over” after N steps
• optimal policy depends on N; harder to analyze

• additive rewards
• V(s0, s1, …) = r(s0) + r(s1) + r(s2) + …
• infinite value for continuing tasks

• discounted rewards
• V(s0, s1, …) = r(s0) + γ*r(s1) + γ2*r(s2) + …
• value bounded if rewards bounded

[Slide from Peter Bodik]



Finding optimal policy using value iteration

• state value function: Vp(s)
• expected return when starting in s and following p
• optimal policy p* has property:

• Learn using fixed point iteration:

• Equivalent formulation uses state-action value function:

(expected return when starting in s, performing a, and following p)
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Q-learning
• Same as value iteration, but rather than assume Pr(s’ | s, a) 

is known, estimate it from data (i.e. episodes)
• Input: sequences/episodes from some behavior policy

• Combine data from all episodes into a set of n tuples
(n = # episodes * length of each):

• Use these to get empirical estimate      and use this instead
• In reinforcement learning, episodes are created as we go, 

using current policy + randomness for exploration

s

a

s’

r

s a,r

r

s’

{(s, a, s0)}
P̂ a
ss0



Where can Q-learning be used?

• need complete model of the environment and 
rewards
• robot in a room

• state space, action space, transition model

• can we use DP to solve
• robot in a room?
• back gammon, or Go?
• helicopter?
• optimal treatment trajectories?

[Slide from Peter Bodik]
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• “Reinforcement learning” / “dynamic treatment regimes”
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Fitted Q-iteration
• Challenge: in infinite or very large state spaces, very 

difficult to estimate Pr(s’ | s, a) 
• Moreover, this is a harder problem than we need to solve!

• We only need to learn how to act
• Can we learn the Q function directly, i.e. a mapping from s,a to 

expected cumulative reward? (“model-free” RL)
• Reduction to supervised machine learning (exactly the same as we 

did in causal inference using regression)

• Input is the same: sequences/episodes from some 
behavior policy:

• First let’s create a dataset                                          and 
learn

s a,r s’

F = {(hsnt , ant i, rnt+1, s
n
t+1), n = 1, . . . , |F|}

Q̂(st, at) ! rt+1



Fitted Q-iteration
• First let’s create a dataset                                         and 

learn
• Trick: to predict the cumulative reward, we iterate this 

process

• Initialize                         using 
• For k=1, …

1. Create training set for kth learning problem:

2. Use supervised learning to estimate function                  from 
3. Update Q values for each observed tuple in      using Bellman 

equation:
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Example of Q-iteration
• Adaptive treatment strategy for treating psychiatric 

disorders

[Murphy et al., Neuropsychopharmacology, 2007]

demonstrate the utility of these designs and to illuminate
any unexpected issues.

Constructing Decision Rules from Data

Why are new ways of analyzing data needed? It turns out
that in many cases the construction of optimized treatment
decision rules requires a more holistic approach than
expected. For example, it is tempting to ascertain the best
treatment at any given time ignoring future treatments. This
approach, however, can lead to erroneous conclusions
about the best sequence of treatments. The effect of the
sequence cannot be accurately estimated by evaluating only
a single treatment episode. For example, an initial course of
cognitive therapy for depression may be much more
effective in the long term when followed by less frequent
therapy sessions (continuation treatment) than when
followed by waiting without therapy (Jarrett et al, 1998).
Consider two treatments (A and B) that differ in terms of

immediate response, favoring A. But when B is followed by
B augmented with C, the longer-term response during the
entire time period may exceed the effect of A followed by
A augmented with C (Figure 2). This occurs for two reasons.
First, if a patient responds to B then the patient is more
likely to either remain in or progress to remission as
opposed to a patient who responds to A. Second, treatment
B followed by B+C is synergistic, that is among those who
do not respond to B, treatment B +C produces higher
remission rate as compared to the effect of treatment A+C
among those who did not respond initially to A.
Similarly a treatment may be very useful in the long term,

but may entail greater cost or inconvenience in the short
term. For instance, cognitive therapy may be useful in

reducing relapses, once the treatment is stopped (Fava et al,
1998, 2001; Hollon et al, 2005) yet it is more time
consuming and expensive in the short term. So, too, vagus
nerve stimulation (Rush et al, 2005a, b; Sackeim et al, 2001;
George et al, 2005) may have only modest or minimal short-
term effects, yet in the longer-term, efficacy may increase.
The fact that one should incorporate the effects of future
treatment decisions when evaluating present treatment is
well known to scientists who work on improving sequential
decision making (Parmigiani, 2002; see comments on
myopic decisions in Sutton and Barto (1998)). There are
methods for constructing decision rules that incorporate the
effects of future decisions when evaluating present treat-
ment decisions (Thall et al, 2000; Pineau et al, 2003;
Parmigiani, 2002; Qin and Badgwell, 2003; Braun et al, 2001;
Sutton and Barto, 1998; Murphy et al, 2001; Murphy, 2003;
Robins, 2004). These methods also permit the evaluation of
the tailoring variables.
One intuitive computer science technique for construct-

ing decision rules is called ‘Q-learning’ (Sutton and Barto,
1998; Blatt et al, 2004). Q-learning explicitly incorporates
the effects of future decisions; it is a generalization of the
familiar regression model. To illustrate a simple version of
Q-Learning suppose the goal is to minimize the average
level of depression over a 4-month period, and suppose that
data from the SMART design in Figure 1 is available. Note
there are only two key decisions in this rather simple trial,
the initial treatment decision and then the second treatment
decision (for those not responding satisfactorily to the
initial treatment). Suppose further that remission and side-
effect level are to be used as tailoring variables in decision
making.
In Q-learning with SMART data the construction of the

decision rules works backwards from the last decision to the
first decision. As there are two treatment decisions there are
two regressions. Consider the last (here second) treatment
decision. This regression uses data from subjects whose
depression did not remit by 8 weeks. A simple model uses a
summary of depression during weeks 9 through 12 as the
independent variable (Y2) and the regression model

b0 þ b1S8 þ ðb2 þ b3S8ÞT2 ð1Þ
The subscript 8 indicates that the side-effect level, S8, is a
summary of side effects up to the end of the eighth week. In
general the regression might include further potential
tailoring variables such as number of past depression
episodes, adherence level during initial 8 weeks and the
initial treatment to which the subject was assigned. The
treatment T2 is coded as 1 if the switch is assigned and
is coded as 0 if augmentation is assigned. In this simple
case, the decision rule recommends a switch in treatment
for a patient with nonremitting depression if b0 + b1S8 +
(b2 + b3S8) is smaller than b0 + b1S8 and recommends an
augmentation otherwise (ie, recommend a switch if b2 +
b3S8o0). If one expects that the higher the side effects S8
are, the better it is to switch treatment, then b3 will be
negative.
Now consider the initial decision. In this regression we

use data from all subjects regardless of whether their
depression remitted. It is insufficient to use a summary of
depression during the first 8 weeks (Y1) or the indicator of
remission as the independent variable because both of these

Initial
Treatment

 2 Month
Outcome

Initial
Response

Second
Treatment

Second
Response

Final
Status

60% Nonremission

30% Nonremission

50% Nonremission

20% Nonremission

24%
Non-

remission

18%
Non-

remission

40% No Response      A+C
16%

Remission

42%
Remission

10%
Non-

remission

40%
Remission

25%
Non-

remission

25%
Remission

40% Remission

70% Remission

50% Remission

80% Remission

    A

60% Some
Response

50% No Response

50% Some
Response

      A

     B+C

     B

     B

Figure 2 A comparison of two strategies. The strategy beginning with
medication A has an overall remission rate at 4 months of 58% (16 + 42%).
The strategy beginning with medication B has an overall remission rate at
4 months of 65% (25+ 40%). Medication A is best if considered as a stand-
alone treatment, but medication B is best initially when considered as part
of a sequence of treatments.
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demonstrate the utility of these designs and to illuminate
any unexpected issues.

Constructing Decision Rules from Data

Why are new ways of analyzing data needed? It turns out
that in many cases the construction of optimized treatment
decision rules requires a more holistic approach than
expected. For example, it is tempting to ascertain the best
treatment at any given time ignoring future treatments. This
approach, however, can lead to erroneous conclusions
about the best sequence of treatments. The effect of the
sequence cannot be accurately estimated by evaluating only
a single treatment episode. For example, an initial course of
cognitive therapy for depression may be much more
effective in the long term when followed by less frequent
therapy sessions (continuation treatment) than when
followed by waiting without therapy (Jarrett et al, 1998).
Consider two treatments (A and B) that differ in terms of

immediate response, favoring A. But when B is followed by
B augmented with C, the longer-term response during the
entire time period may exceed the effect of A followed by
A augmented with C (Figure 2). This occurs for two reasons.
First, if a patient responds to B then the patient is more
likely to either remain in or progress to remission as
opposed to a patient who responds to A. Second, treatment
B followed by B+C is synergistic, that is among those who
do not respond to B, treatment B +C produces higher
remission rate as compared to the effect of treatment A+C
among those who did not respond initially to A.
Similarly a treatment may be very useful in the long term,

but may entail greater cost or inconvenience in the short
term. For instance, cognitive therapy may be useful in

reducing relapses, once the treatment is stopped (Fava et al,
1998, 2001; Hollon et al, 2005) yet it is more time
consuming and expensive in the short term. So, too, vagus
nerve stimulation (Rush et al, 2005a, b; Sackeim et al, 2001;
George et al, 2005) may have only modest or minimal short-
term effects, yet in the longer-term, efficacy may increase.
The fact that one should incorporate the effects of future
treatment decisions when evaluating present treatment is
well known to scientists who work on improving sequential
decision making (Parmigiani, 2002; see comments on
myopic decisions in Sutton and Barto (1998)). There are
methods for constructing decision rules that incorporate the
effects of future decisions when evaluating present treat-
ment decisions (Thall et al, 2000; Pineau et al, 2003;
Parmigiani, 2002; Qin and Badgwell, 2003; Braun et al, 2001;
Sutton and Barto, 1998; Murphy et al, 2001; Murphy, 2003;
Robins, 2004). These methods also permit the evaluation of
the tailoring variables.
One intuitive computer science technique for construct-

ing decision rules is called ‘Q-learning’ (Sutton and Barto,
1998; Blatt et al, 2004). Q-learning explicitly incorporates
the effects of future decisions; it is a generalization of the
familiar regression model. To illustrate a simple version of
Q-Learning suppose the goal is to minimize the average
level of depression over a 4-month period, and suppose that
data from the SMART design in Figure 1 is available. Note
there are only two key decisions in this rather simple trial,
the initial treatment decision and then the second treatment
decision (for those not responding satisfactorily to the
initial treatment). Suppose further that remission and side-
effect level are to be used as tailoring variables in decision
making.
In Q-learning with SMART data the construction of the

decision rules works backwards from the last decision to the
first decision. As there are two treatment decisions there are
two regressions. Consider the last (here second) treatment
decision. This regression uses data from subjects whose
depression did not remit by 8 weeks. A simple model uses a
summary of depression during weeks 9 through 12 as the
independent variable (Y2) and the regression model

b0 þ b1S8 þ ðb2 þ b3S8ÞT2 ð1Þ
The subscript 8 indicates that the side-effect level, S8, is a
summary of side effects up to the end of the eighth week. In
general the regression might include further potential
tailoring variables such as number of past depression
episodes, adherence level during initial 8 weeks and the
initial treatment to which the subject was assigned. The
treatment T2 is coded as 1 if the switch is assigned and
is coded as 0 if augmentation is assigned. In this simple
case, the decision rule recommends a switch in treatment
for a patient with nonremitting depression if b0 + b1S8 +
(b2 + b3S8) is smaller than b0 + b1S8 and recommends an
augmentation otherwise (ie, recommend a switch if b2 +
b3S8o0). If one expects that the higher the side effects S8
are, the better it is to switch treatment, then b3 will be
negative.
Now consider the initial decision. In this regression we

use data from all subjects regardless of whether their
depression remitted. It is insufficient to use a summary of
depression during the first 8 weeks (Y1) or the indicator of
remission as the independent variable because both of these
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Figure 2 A comparison of two strategies. The strategy beginning with
medication A has an overall remission rate at 4 months of 58% (16 + 42%).
The strategy beginning with medication B has an overall remission rate at
4 months of 65% (25+ 40%). Medication A is best if considered as a stand-
alone treatment, but medication B is best initially when considered as part
of a sequence of treatments.
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Example of Q-iteration
• Goal: minimize average level of depression over 4-month 

period; only 2 decisions (initial and second treatment)
• Y2 = summary of depression weeks 9 through 12
• S8 = summary of side-effects up to end of 8th week
• First, regress onto Y2 using:

learn decision rule that recommends switching treatment 
for patient if              is less than zero

• Then consider initial decision T1, regressing on
Y1 + min(                           ,            )

[Murphy et al., Neuropsychopharmacology, 2007]

demonstrate the utility of these designs and to illuminate
any unexpected issues.

Constructing Decision Rules from Data

Why are new ways of analyzing data needed? It turns out
that in many cases the construction of optimized treatment
decision rules requires a more holistic approach than
expected. For example, it is tempting to ascertain the best
treatment at any given time ignoring future treatments. This
approach, however, can lead to erroneous conclusions
about the best sequence of treatments. The effect of the
sequence cannot be accurately estimated by evaluating only
a single treatment episode. For example, an initial course of
cognitive therapy for depression may be much more
effective in the long term when followed by less frequent
therapy sessions (continuation treatment) than when
followed by waiting without therapy (Jarrett et al, 1998).
Consider two treatments (A and B) that differ in terms of

immediate response, favoring A. But when B is followed by
B augmented with C, the longer-term response during the
entire time period may exceed the effect of A followed by
A augmented with C (Figure 2). This occurs for two reasons.
First, if a patient responds to B then the patient is more
likely to either remain in or progress to remission as
opposed to a patient who responds to A. Second, treatment
B followed by B+C is synergistic, that is among those who
do not respond to B, treatment B +C produces higher
remission rate as compared to the effect of treatment A+C
among those who did not respond initially to A.
Similarly a treatment may be very useful in the long term,

but may entail greater cost or inconvenience in the short
term. For instance, cognitive therapy may be useful in

reducing relapses, once the treatment is stopped (Fava et al,
1998, 2001; Hollon et al, 2005) yet it is more time
consuming and expensive in the short term. So, too, vagus
nerve stimulation (Rush et al, 2005a, b; Sackeim et al, 2001;
George et al, 2005) may have only modest or minimal short-
term effects, yet in the longer-term, efficacy may increase.
The fact that one should incorporate the effects of future
treatment decisions when evaluating present treatment is
well known to scientists who work on improving sequential
decision making (Parmigiani, 2002; see comments on
myopic decisions in Sutton and Barto (1998)). There are
methods for constructing decision rules that incorporate the
effects of future decisions when evaluating present treat-
ment decisions (Thall et al, 2000; Pineau et al, 2003;
Parmigiani, 2002; Qin and Badgwell, 2003; Braun et al, 2001;
Sutton and Barto, 1998; Murphy et al, 2001; Murphy, 2003;
Robins, 2004). These methods also permit the evaluation of
the tailoring variables.
One intuitive computer science technique for construct-

ing decision rules is called ‘Q-learning’ (Sutton and Barto,
1998; Blatt et al, 2004). Q-learning explicitly incorporates
the effects of future decisions; it is a generalization of the
familiar regression model. To illustrate a simple version of
Q-Learning suppose the goal is to minimize the average
level of depression over a 4-month period, and suppose that
data from the SMART design in Figure 1 is available. Note
there are only two key decisions in this rather simple trial,
the initial treatment decision and then the second treatment
decision (for those not responding satisfactorily to the
initial treatment). Suppose further that remission and side-
effect level are to be used as tailoring variables in decision
making.
In Q-learning with SMART data the construction of the

decision rules works backwards from the last decision to the
first decision. As there are two treatment decisions there are
two regressions. Consider the last (here second) treatment
decision. This regression uses data from subjects whose
depression did not remit by 8 weeks. A simple model uses a
summary of depression during weeks 9 through 12 as the
independent variable (Y2) and the regression model

b0 þ b1S8 þ ðb2 þ b3S8ÞT2 ð1Þ
The subscript 8 indicates that the side-effect level, S8, is a
summary of side effects up to the end of the eighth week. In
general the regression might include further potential
tailoring variables such as number of past depression
episodes, adherence level during initial 8 weeks and the
initial treatment to which the subject was assigned. The
treatment T2 is coded as 1 if the switch is assigned and
is coded as 0 if augmentation is assigned. In this simple
case, the decision rule recommends a switch in treatment
for a patient with nonremitting depression if b0 + b1S8 +
(b2 + b3S8) is smaller than b0 + b1S8 and recommends an
augmentation otherwise (ie, recommend a switch if b2 +
b3S8o0). If one expects that the higher the side effects S8
are, the better it is to switch treatment, then b3 will be
negative.
Now consider the initial decision. In this regression we

use data from all subjects regardless of whether their
depression remitted. It is insufficient to use a summary of
depression during the first 8 weeks (Y1) or the indicator of
remission as the independent variable because both of these

Initial
Treatment

 2 Month
Outcome

Initial
Response

Second
Treatment

Second
Response

Final
Status

60% Nonremission

30% Nonremission

50% Nonremission

20% Nonremission

24%
Non-

remission

18%
Non-

remission

40% No Response      A+C
16%

Remission

42%
Remission

10%
Non-

remission

40%
Remission

25%
Non-

remission

25%
Remission

40% Remission

70% Remission

50% Remission

80% Remission

    A

60% Some
Response

50% No Response

50% Some
Response

      A

     B+C

     B

     B

Figure 2 A comparison of two strategies. The strategy beginning with
medication A has an overall remission rate at 4 months of 58% (16 + 42%).
The strategy beginning with medication B has an overall remission rate at
4 months of 65% (25+ 40%). Medication A is best if considered as a stand-
alone treatment, but medication B is best initially when considered as part
of a sequence of treatments.
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demonstrate the utility of these designs and to illuminate
any unexpected issues.

Constructing Decision Rules from Data

Why are new ways of analyzing data needed? It turns out
that in many cases the construction of optimized treatment
decision rules requires a more holistic approach than
expected. For example, it is tempting to ascertain the best
treatment at any given time ignoring future treatments. This
approach, however, can lead to erroneous conclusions
about the best sequence of treatments. The effect of the
sequence cannot be accurately estimated by evaluating only
a single treatment episode. For example, an initial course of
cognitive therapy for depression may be much more
effective in the long term when followed by less frequent
therapy sessions (continuation treatment) than when
followed by waiting without therapy (Jarrett et al, 1998).
Consider two treatments (A and B) that differ in terms of

immediate response, favoring A. But when B is followed by
B augmented with C, the longer-term response during the
entire time period may exceed the effect of A followed by
A augmented with C (Figure 2). This occurs for two reasons.
First, if a patient responds to B then the patient is more
likely to either remain in or progress to remission as
opposed to a patient who responds to A. Second, treatment
B followed by B+C is synergistic, that is among those who
do not respond to B, treatment B +C produces higher
remission rate as compared to the effect of treatment A+C
among those who did not respond initially to A.
Similarly a treatment may be very useful in the long term,

but may entail greater cost or inconvenience in the short
term. For instance, cognitive therapy may be useful in

reducing relapses, once the treatment is stopped (Fava et al,
1998, 2001; Hollon et al, 2005) yet it is more time
consuming and expensive in the short term. So, too, vagus
nerve stimulation (Rush et al, 2005a, b; Sackeim et al, 2001;
George et al, 2005) may have only modest or minimal short-
term effects, yet in the longer-term, efficacy may increase.
The fact that one should incorporate the effects of future
treatment decisions when evaluating present treatment is
well known to scientists who work on improving sequential
decision making (Parmigiani, 2002; see comments on
myopic decisions in Sutton and Barto (1998)). There are
methods for constructing decision rules that incorporate the
effects of future decisions when evaluating present treat-
ment decisions (Thall et al, 2000; Pineau et al, 2003;
Parmigiani, 2002; Qin and Badgwell, 2003; Braun et al, 2001;
Sutton and Barto, 1998; Murphy et al, 2001; Murphy, 2003;
Robins, 2004). These methods also permit the evaluation of
the tailoring variables.
One intuitive computer science technique for construct-

ing decision rules is called ‘Q-learning’ (Sutton and Barto,
1998; Blatt et al, 2004). Q-learning explicitly incorporates
the effects of future decisions; it is a generalization of the
familiar regression model. To illustrate a simple version of
Q-Learning suppose the goal is to minimize the average
level of depression over a 4-month period, and suppose that
data from the SMART design in Figure 1 is available. Note
there are only two key decisions in this rather simple trial,
the initial treatment decision and then the second treatment
decision (for those not responding satisfactorily to the
initial treatment). Suppose further that remission and side-
effect level are to be used as tailoring variables in decision
making.
In Q-learning with SMART data the construction of the

decision rules works backwards from the last decision to the
first decision. As there are two treatment decisions there are
two regressions. Consider the last (here second) treatment
decision. This regression uses data from subjects whose
depression did not remit by 8 weeks. A simple model uses a
summary of depression during weeks 9 through 12 as the
independent variable (Y2) and the regression model

b0 þ b1S8 þ ðb2 þ b3S8ÞT2 ð1Þ
The subscript 8 indicates that the side-effect level, S8, is a
summary of side effects up to the end of the eighth week. In
general the regression might include further potential
tailoring variables such as number of past depression
episodes, adherence level during initial 8 weeks and the
initial treatment to which the subject was assigned. The
treatment T2 is coded as 1 if the switch is assigned and
is coded as 0 if augmentation is assigned. In this simple
case, the decision rule recommends a switch in treatment
for a patient with nonremitting depression if b0 + b1S8 +
(b2 + b3S8) is smaller than b0 + b1S8 and recommends an
augmentation otherwise (ie, recommend a switch if b2 +
b3S8o0). If one expects that the higher the side effects S8
are, the better it is to switch treatment, then b3 will be
negative.
Now consider the initial decision. In this regression we

use data from all subjects regardless of whether their
depression remitted. It is insufficient to use a summary of
depression during the first 8 weeks (Y1) or the indicator of
remission as the independent variable because both of these

Initial
Treatment

 2 Month
Outcome

Initial
Response

Second
Treatment

Second
Response

Final
Status

60% Nonremission

30% Nonremission

50% Nonremission

20% Nonremission

24%
Non-

remission

18%
Non-

remission

40% No Response      A+C
16%

Remission

42%
Remission

10%
Non-

remission

40%
Remission

25%
Non-

remission

25%
Remission

40% Remission

70% Remission

50% Remission

80% Remission

    A

60% Some
Response

50% No Response

50% Some
Response

      A

     B+C

     B

     B

Figure 2 A comparison of two strategies. The strategy beginning with
medication A has an overall remission rate at 4 months of 58% (16 + 42%).
The strategy beginning with medication B has an overall remission rate at
4 months of 65% (25+ 40%). Medication A is best if considered as a stand-
alone treatment, but medication B is best initially when considered as part
of a sequence of treatments.
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represent only short-term benefits instead of both short-
and long-term benefits of the initial treatment. Instead a
term is added to Y1; this term represents longer-term
benefits of the initial decision. Denote this additional term
by V; model (1) provides V for the nonremitting subjects. In
this case, V is the smaller of b0 + b1S8 + (b2 + b3S8) and b0 +
b1S8. The former term is smaller if a switch in treatment was
found to be best. V represents the effect of the initial
decision on both the depression summary during weeks
9–16 and on the best second treatment decision (if subject’s
depression did not remit by week 8). If a subject’s
depression remitted by week 8 then V is simply the
predicted Y2 from a regression of Y2 on S8 for the remitting
subjects. The regression for the initial treatment decision
uses Y1 +V as the independent variable and the regression
model: a0 + a1T1 where treatment T1 is coded as 1 if the
medication A is assigned and is coded as 0 otherwise. In this
simple case, the decision rule recommends medication A if
a1 is positive and recommends medication B otherwise. In
general one would include dependent variables such as
number of past depression episodes and other subject
characteristics.

Needed research and collaboration. Although there are
several methods for using data to construct adaptive
treatment strategies, these methods have not been evaluated
in realistic settings. Collaborations are needed to provide
practical evaluations of existing methods, like Q-Learning,
for developing adaptive treatment strategies. For example,
the illustration provided above is somewhat simplistic. In
practice, there are often more than two decisions, each may
involve a choice between more than two options, the
regression models might not be linear, and there may be a
variety of outcomes.

DISCUSSION

Effective management of chronic psychiatric disorders
presents many challenges. Response heterogeneity is
common, treatments may become burdensome, adherence
is problematic, and many patients may relapse. Additionally
these disorders often occur in conjunction with other health
and social problems. These disorder characteristics and the
treatment/social settings in which they occur motivate the
development of adaptive treatment strategies. Addressing
tactical questions concerning the length of time to wait for
treatment response and the choice of subsequent treatment
are crucial in this endeavor. We have discussed a variety of
promising methodologies in developing adaptive treatment
strategies. These methodologies, however, while clearly
useful in other scientific domains, are relatively untested
in the fields of psychiatric disorders. Thus, the primary
challenge is to form collaborative teams to evaluate these
and other methodologies to construct evidence-based
adaptive treatment strategies. These interdisciplinary,
collaborative, teams can spur new ways to conceptualize
sequential decision making and enable the use of new
methodologies in improving clinical care for individuals
with chronic disorders. The scientific opportunities, poten-
tial for improved patient care, and the intellectual
challenges entailed in such work provide strong incentives
for such efforts.
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represent only short-term benefits instead of both short-
and long-term benefits of the initial treatment. Instead a
term is added to Y1; this term represents longer-term
benefits of the initial decision. Denote this additional term
by V; model (1) provides V for the nonremitting subjects. In
this case, V is the smaller of b0 + b1S8 + (b2 + b3S8) and b0 +
b1S8. The former term is smaller if a switch in treatment was
found to be best. V represents the effect of the initial
decision on both the depression summary during weeks
9–16 and on the best second treatment decision (if subject’s
depression did not remit by week 8). If a subject’s
depression remitted by week 8 then V is simply the
predicted Y2 from a regression of Y2 on S8 for the remitting
subjects. The regression for the initial treatment decision
uses Y1 +V as the independent variable and the regression
model: a0 + a1T1 where treatment T1 is coded as 1 if the
medication A is assigned and is coded as 0 otherwise. In this
simple case, the decision rule recommends medication A if
a1 is positive and recommends medication B otherwise. In
general one would include dependent variables such as
number of past depression episodes and other subject
characteristics.

Needed research and collaboration. Although there are
several methods for using data to construct adaptive
treatment strategies, these methods have not been evaluated
in realistic settings. Collaborations are needed to provide
practical evaluations of existing methods, like Q-Learning,
for developing adaptive treatment strategies. For example,
the illustration provided above is somewhat simplistic. In
practice, there are often more than two decisions, each may
involve a choice between more than two options, the
regression models might not be linear, and there may be a
variety of outcomes.

DISCUSSION

Effective management of chronic psychiatric disorders
presents many challenges. Response heterogeneity is
common, treatments may become burdensome, adherence
is problematic, and many patients may relapse. Additionally
these disorders often occur in conjunction with other health
and social problems. These disorder characteristics and the
treatment/social settings in which they occur motivate the
development of adaptive treatment strategies. Addressing
tactical questions concerning the length of time to wait for
treatment response and the choice of subsequent treatment
are crucial in this endeavor. We have discussed a variety of
promising methodologies in developing adaptive treatment
strategies. These methodologies, however, while clearly
useful in other scientific domains, are relatively untested
in the fields of psychiatric disorders. Thus, the primary
challenge is to form collaborative teams to evaluate these
and other methodologies to construct evidence-based
adaptive treatment strategies. These interdisciplinary,
collaborative, teams can spur new ways to conceptualize
sequential decision making and enable the use of new
methodologies in improving clinical care for individuals
with chronic disorders. The scientific opportunities, poten-
tial for improved patient care, and the intellectual
challenges entailed in such work provide strong incentives
for such efforts.
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Empirical study for schizophrenia
• Clinical Antipsychotic Trials of Intervention Effectiveness: 

18 month multistage clinical trial of 1460 patients with 
schizophrenia – 2 stages

• Subjects randomly given a stage 1 treatment: olanzapine, 
risperidone, quetiapine, ziprasidone, and perphenazine

• Followed for up to 18 months; allowed to switch treatment 
if original was not effective:
• Lack of efficacy (i.e., symptoms still high)
• Lack of tolerability (i.e., side-effects large)

• Data recorded every 3 months (i.e., 6 time points)
• Reward at each time point: (negative) PANSS score (low 

PANSS score = few psychotic symptoms)
[Shortreed et al., Mach Learn, 2011]



Empirical study for schizophrenia

[Shortreed et al., Mach Learn, 2011]Fig. 1.
Barplot of missing PANSS scores in the CATIE study. The total height of the bar shows the
absolute number of people who have a missing PANSS score at each of these monthly visits.
The dark grey area represents the number of people who have missing PANSS score
because they dropped out of the study prior to that month. The unshaded area is the number
of missing PANSS scores due to item missingness. The missing data pattern for other time-
varying patient information collected during the CATIE study is similar to the missing data
pattern shown here.
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Empirical study for schizophrenia
• Data pre-processing:

• Multiple imputation for the features (i.e. state)
• Bayesian mixed effects model for PANSS score (i.e. reward)

• Fitted Q-iteration performed using linear regression
• Different weight vector for each action (allows for nonlinear 

relationship between state and action)
• Different weight vectors for each of the two time points
• Weight sharing for variables not believed to be action specific but 

just helpful for estimating Q–function (e.g., tardive dyskinesia, 
recent psychotic episode, clinic site type)

• Bootstrap voting to get confidence intervals for treatment 
effects

[Shortreed et al., Mach Learn, 2011]



Empirical study for schizophrenia

[Shortreed et al., Mach Learn, 2011]

• Optimal treatment policy:

Fig. 3.
Optimal treatment policy learned from 25 imputations of the CATIE data, with the total
reward defined as the negative area under the PANSS curve for the 18 months of the CATIE
study. The state representation is defined in Section 3.1 and the Q-function form used is
described in Section 4.2
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Empirical study for schizophrenia

[Shortreed et al., Mach 
Learn, 2011]

• Stage 1 stage-action value-function:

Fig. 6.
Estimates and 95% confidence intervals for stage 1 state-action value-function. The circle
represents the point estimate for the value of each action given the PANSS score indicated
on the horizontal axis. The different stage 1 treatments are represented by the colors
indicated in the legend.
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Empirical study for schizophrenia

[Shortreed et 
al., Mach 
Learn, 2011]

• Stage 2 stage-action value-function:

Fig. 7.
Estimates and 95% confidence intervals for stage 2 state-action Q-function. The circle
represents the point estimates of the state-action value function for each action given the
PANSS score indicated on the horizontal axis. The various stage 2 treatments are
represented by the colors indicated in the legend.
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Fig. 7.
Estimates and 95% confidence intervals for stage 2 state-action Q-function. The circle
represents the point estimates of the state-action value function for each action given the
PANSS score indicated on the horizontal axis. The various stage 2 treatments are
represented by the colors indicated in the legend.
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Measuring convergence in fitted Q-
iteration

As a baseline, we applied Q-learning to the training data to
learn the mapping of continuous states to Q-values, with
function approximation using a three-layer feedforward
neural network. The network is trained using Adam, an
efficient stochastic gradient-based optimizer (Kingma and
Ba [2014]), and l2 regularization of weights. Each patient
admission k is treated as a distinct episode, with on the or-
der of thousands of state transitions in each; the network
weights are incrementally updated following each transi-
tion. Studying the change between successive episodes in
the predicted Q-values for all state-action pairs in the train-
ing set (Figure 4), it is unclear whether the algorithm suc-
ceeds in converging within the 1,800 training episodes.

Figure 4: Convergence of ˆQ(s, a) using Q-learning.

We then explored the use of FQI to learn our Q-function,
first running with an Extra-Trees for function approxima-
tion. In our implementation, each iteration of FQI is per-
formed on a random subset of 10% of all transitions in the
training set, as described in Algorithm 1, such that on aver-
age, each sample is seen in a tenth of all iterations. Though
sampling increases the total number of iterations required
for convergence, it yields significant speed-ups in building
trees at each iteration, and hence in total training time. The
ensemble regressor learns 50 trees, with regularization in
the form of a minimum leaf node size of 20 samples. We
present here results with FQI performed for a fixed number
of 100 iterations, though it is possible to use a convergence
criterion of the form �(Qk, Qk�1)  " for early stopping,
to speed up training further.

For comparison, we used he same methods to run FQI
with neural networks (NFQ) in place of tree-based regres-
sion: we train a feedforward network with architecture and
techniques identical to those applied in our function ap-
proximation for Q-learning. Convergence of the estimated
Q-function for both regressors is measured by the mean
change in the estimate ˆQ for transitions in the training set
(Figure 5) which shows that the algorithm takes roughly
60 iterations to converge in both cases. However, NFQ
yields approximately a four-fold gain in runtime speed, as

expected, since with neural networks we can simply update
weights rather than retraining fully at each iteration.

Figure 5: Convergence of estimated Q using FQI, given by
the mean change in ˆQ(s, a) over successive iterations.

The estimated Q-functions from FQI with Extra-Trees
(FQIT) and from NFQ are then used to evaluate the op-
timal action, i.e. that which maximizes the value of the
state-action pair, for each state in the training set. We can
then train policy functions ⇡(s) mapping a given patient
state to the corresponding optimal action a 2 A. To al-
low for clinical interpretation of the final policy, we choose
to train an Extra-Trees classifier with an ensemble of 100
trees to represent the policy function.

The relative importance assigned to the top 24 features in
the state space for the policy trees learnt, when training on
optimal actions from both FQIT and NFQ, show that the
five vitals ranking highest in importance across the two
policies are arterial O2 pressure, arterial pH, FiO2, O2

flow and PEEP set (Figure 6). These are as expected—
Arterial pH, FiO2, and PEEP all feature in our preliminary
HUP guidelines for extubation criteria, and there is con-
siderable literature suggesting blood gases are an impor-
tant indicator of readiness for weaning (Hoo [2012]). On
the other hand, oxygen saturation pulse oxymetry (SpO2)
which is also included in HUP’s current extubation crite-
ria, is fairly low in ranking. This may be because these
measurements are highly correlated with other factors in
the state space, such as arterial O2 pressure (Collins et al.
[2015]), that account for its influence on weaning more di-
rectly. The limited importance assigned to heart rate and
respiratory rate, which can serve as indicators of blood
pressure and blood gases, are also likely to be explained
by this dependence between vitals.

In terms of demographics, weight and age play a signifi-
cant role in the weaning policy learnt: weight is likely to
influence our sedation policy specifically, as dosages are
typically adjusted for patient weight, while age is strongly
correlated with a patient’s speed of recovery, and hence the
time necessary on ventilator support.

[Prasad et al., 2017]



Playing Atari with deep reinforcement 
learning

[Mnih et al., 2015]

Game "Breakout”: control paddle at bottom to break all bricks in upper half of screen

• Do fitted Q-iteration using deep convolutional neural networks to model the 
Q function

• Use eps-greedy algorithm to perform exploration
• Infinite time horizon


