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Outline of today’s class
1. Overview of clustering (k-means algorithm)

• Application: discovering asthma subtypes

2. Overview of latent variable models and Bayesian 
networks

• Application: learning disease progression models



Clustering
Clustering:

• Unsupervised learning
• Requires data, but no labels
• Detect patterns e.g. in

• Group emails or search results
• Customer shopping patterns
• Regions of images

• Useful when don’t know what 
you’re looking for

• But: can get gibberish

[This & next few slides adapted from Luke Zettlemoyer, Vibhav Gogate, Carlos Guestrin, Andrew Moore, Dan Klein]



Clustering
• Basic idea: group together similar instances
• Example: 2D point patterns
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Clustering
• Basic idea: group together similar instances
• Example: 2D point patterns

• What could “similar”mean?
• One option: small Euclidean distance (squared) 

• Clustering results are crucially dependent on the measure of 
similarity (or distance) between “points” to be clustered

dist(~x, ~y) = ||~x� ~y||22



Clustering algorithms
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K-Means
• An iterative clustering 

algorithm

– Initialize: Pick K random 
points as cluster centers

– Alternate:
1. Assign data points to 

closest cluster center
2. Change the cluster 

center to the average 
of its assigned points

– Stop when no points’
assignments change



K-means clustering: Example

• Pick K random 
points as cluster 
centers (means)

Shown here for K=2



K-means clustering: Example
Iterative Step 1
• Assign data points to 

closest cluster center



K-means clustering: Example
Iterative Step 2
• Change the cluster 

center to the average of 
the assigned points



K-means clustering: Example
• Repeat until 
convergence



Asthma: the problem
• 5 to 10% of people with severe asthma 
remain poorly controlled despite maximal 
inhaled therapy 

[Holgate ST, Polosa R. The mechanisms, diagnosis, 
and management of severe asthma in adults. Lancet. 
2006; 368:780–793]

[whatasthmais.com]



• What are the processes (genetic or environmental) that underlie 
different subtypes of asthma?

• Which aspects of airway remodelling are important in disease 
subtypes?

• What are the best biomarkers of disease progression or treatment 
response?

• Why are some patients less responsive to conventional therapies 
than others?

[Adcock et al., “New targets for drug development in asthma”. The Lancet, 2008]

“It is now recognised that there are distinct asthma phenotypes and 
that distinct therapeutic approaches may only impinge on some 
aspects of the disease process within each subgroup”

Asthma: the question



[Haldar et al., Am J Respir Crit Care Med, 2008]

Discovering subtypes from data



The data
• All patients had physician diagnosis of asthma and one 

prescription for asthma therapy
• All were current nonsmokers
• Data set #1: 184 patients recruited from primary-care 

practices in the UK
• Data set #2: 187 patients from refractory asthma clinic in 

the UK
• Data set #3: 68 patients from 12 month clinical study
• Features: z scores for continuous variables, 0/1 for 

categorical

[Haldar et al., Am J Respir Crit Care Med, 2008]



[Haldar et al., Am J Respir Crit Care Med, 2008]
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TABLE 1
Comparison of Baseline Characteristics in the three Asthma Populations

Variable
Primary Care

(n = 184)
Secondary Care

(n = 187)
Longitudinal Cohort

(n = 68) P Value*

Sex, % female 54.4 65.8 47.1 0.082

Age, yr (SD) 49.2 (13.9) 43.4 (15.9) 52.4 (14.6) <0.001

Age of onset, yr (SD) 24.7 (19) 20.3 (18.4) 31.1 (23.7) <0.001

Atopic status, % positive 72.8 73.8 57.4 0.365

Body mass index, kg/m2 (SD) 27.5 (5.4) 28.5 (6.5) 28.0 (5.9) 0.55

PC20 methacholine†, mg/ml 1.04 (1.13) † 0.67 (0.68) 0.19

Peak flow variability, amp % mean 17 (0.38) 32.2 (0.48) 13.8 (0.29) <0.001

FEV1 change with bronchodilator, % 1.63 (1.16) 12.8 (0.41) 3.2 (1.04) <0.001

Post-bronchodilator FEV1, % predicted 91.4 (21) 82.1 (21.1) 80.2 (20.6) 0.013

Sputum eosinophil count, % 1.32 (0.62) 2.9 (0.99) 2.4 (0.81) 0.08

FENO
‡, ppb 31.6 (0.33) 43 (0.32) 4.32 (0.64)‡ <0.001

Sputum neutrophil count, % 55.09 (0.31) 46.7 (0.32) 41.1 (0.35) 0.04

Modified JACS§ (SD) 1.36 (0.74) 2.02 (1.16) 1.42 (1.26) <0.001

Dose of inhaled corticosteroid, BDP equivalent/µg (SD) 632 (579) 1,018 (539) 1,821 (1,239) <0.001

Long-acting bronchodilator use, % 40.2 93 86.7 <0.001

Definition of abbreviations: amp = amplitude; BDP = beclomethasone dipropionate; JACS = Juniper Asthma Control Score; SD = standard
deviation.

*Significance figures are derived using one-way analysis of variance between the three populations for continuous variables or χ2 test for
proportions.

†Bronchial challenge testing is not routinely performed in secondary care for refractory asthma. The comparison given is between the primary-care
asthma population and the longitudinal study cohort.

‡FENO was measured using the NIOX (Aerocrine, Solna, Sweden) analyzer at 50 ml/second in the primary-care population and secondary-care
population. The Logan (Logan Research, Ltd., Rochester, Kent, UK) analyzer was used at a flow rate of 250 ml/second in the longitudinal study
cohort. A strong linear correlation of 0.97 exists between the two measurement protocols. The statistical comparison is between Feno levels in
primary and secondary care using NIOX.

§The Juniper Asthma Control Score, modified to include the symptom domains only (see the online supplement).

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.
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TABLE 2
Clusters in Primary Care

Cluster 1 Cluster 2 Cluster 3

Variable
Primary Care

(n = 184)

Early-Onset
Atopic Asthma

(n = 61)

Obese
Noneosinophilic

(n = 27)
Benign Asthma

(n = 96)
Significance
(P Value)*

Sex†, % female 54.4 45.9 81.5 52.1 0.006

Age, yr (SD) 49.2 (13.9) 44.5 (14.3) 53.9 (14) 50.8 (13) 0.003

Age of onset†, yr (SD) 24.7 (19) 14.6 (15.4) 35.3 (19.6) 28.2 (18.3) <0.001

Atopic status†, % positive 72.8 95.1 51.9 64.6 <0.001

Body mass index†, kg/m2 (SD) 27.5 (5.4) 26.1 (3.8) 36.2 (5.5) 26 (3.6) <0.001

PC20 methacholine†‡, mg/ml 1.04 (1.13) 0.12 (0.86) 1.60 (0.93) 6.39 (0.75) <0.001

PC20 >8 mg/ml, n (%) 64 (34.7) 2 (3.3) 6 (22.2) 56 (58.3) <0.001

Peak flow variability†‡, amp % mean 17 (0.38) 20 (0.47) 21.9 (0.32) 14.8 (0.32) 0.039

FEV1 change with bronchodilator‡, % 1.63 (1.16) 4.5 (0.91) 1.82 (1.16) 0.83 (1.22) <0.001

Post-bronchodilator FEV1, % predicted 91.4 (21) 86.9 (20.7) 91.5 (21.4) 94.2 (20.7) 0.107

Sputum eosinophil count†‡, % 1.32 (0.62) 3.75 (0.64) 1.55 (0.51) 0.65 (0.44) <0.001

FENO
‡§, ppb 31.6 (0.33) 57.5 (0.27) 25.8 (0.29) 22.8 (0.27) <0.001

Sputum neutrophil count‡, % 55.09 (0.31) 45.87 (0.24) 72.71 (0.13) 57.56 (0.36) 0.038

Modified JACS† (SD) 1.36 (0.74) 1.54 (0.58) 2.06 (0.73) 1.04 (0.66) <0.001

Dose of inhaled corticosteroid, BDP
equivalent/µg (SD) 632 (579) 548 (559) 746 (611) 653 (581) 0.202

Long-acting bronchodilator use, % 40.2 34.4 48.2 41.7 0.442

Previous hospital admission or emergency
attendance, no. per patient 0.60 (1.57) 1.04 0.26 0.20 0.037

Previous outpatient attendance, % attended 15% 22% 19% 6% 0.121

Severe asthma exacerbations (requiring oral
corticosteroids) in past 12 mo, no. per patient 1.25 (1.94) 1.86 (0.32) 1.07 (0.32) 0.39 (0.18) 0.002

For definition of abbreviations, see Table 1.

Boldface type denotes population statistics. The column headed “Cluster 3” represents a cluster not observed in the secondary-care asthma
population.

*Comparison between clusters using analysis of variance for continuous variables and χ2 test for proportions. Significance values for variables
included in the cluster analysis are a product of the cluster algorithm and are provided for illustrative purposes only.

†Variables included in the cluster analysis.

‡Geometric mean (log10 SD)

§Measured with NIOX at a flow rate of 50 ml/second.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

Clusters 
in primary 
care
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TABLE 3
Clusters in Secondary Care

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Variable

Secondary
Care

(n = 187)
Early Onset, Atopic

(n = 74)

Obese,
Noneosinophilic

(n = 23)

Early Symptom
Predominant

(n = 22)

Inflammation
Predominant

(n = 68)
Significance
(P Value)*

Sex†, % female 65.8 75.7 87 68.2 47.1 <0.001

Age, yr (SD) 43.4 (15.9) 39.4 (15.7) 42.7 (11.1) 35.5 (15.5) 50.6 (15.1) <0.001

Age of onset†, yr (SD) 20.3 (18.4) 12.7 (12.9) 15.4 (15.2) 12.6 (15) 32.6 (19.1) <0.001

Atopic status†, % positive 73.8 83.8 65.2 81.8 63.2 0.024

Body mass index†, kg/m2 (SD) 28.5 (6.5) 27.6 (4.5) 40.9 (6.5) 23.6 (3.1) 27 (3.9) <0.001

Peak flow variability‡, amp %
mean

32.2 (0.48) 46.1 (0.35) 21.2 (0.76) 24.2 (0.65) 27.6 (0.36) 0.002

FEV1 change with

bronchodilator‡, %
12.8 (0.41) 24.5 (0.31) 9.3 (0.35) 4.5 (0.33) 9.8 (0.34) <0.001

Post-bronchodilator FEV1, %
predicted (SD) 82.1 (21.1) 79.0 (21.9) 79.0 (18.5) 79.5 (26.1) 87.2 (18.5) 0.093

Sputum eosinophil count†‡, % 2.9 (0.99) 4.2 (0.76) 1.3 (1.01) 0.1 (0.9) 8.4 (0.64) <0.001

FENO
‡§, ppb 43 (0.32) 51.2 (0.36) 24.2 (0.27) 22.6 (0.30) 53.1 (0.32) <0.001

Sputum neutrophil count, %‡ 46.7 (0.32) 45.4 (0.39) 49.3 (0.22) 51.3 (0.23) 45.9 (0.29) 0.892

Modified JACS† (SD) 2.02 (1.16) 2.63 (0.93) 2.37 (1.09) 2.11 (1.11) 1.21 (0.95) <0.001

Dose of inhaled corticosteroid,
BDP equivalent/µg (SD) 1,018 (539) 1,168 (578) 1,045 (590) 809 (396) 914 (479) 0.008

Long-acting bronchodilator use,
% 93.0 91.9 95.4 90.9 94.1 0.999

Maintenance oral corticosteroid
use, % 31.7 32.4 22.7 22.7 36.8 0.604

Median Nijmegen score (IQR)

(% with score >23)∥
16 (7–26.5) 20.5 (12–30.25) (44.6) 23 (12–33) (52.2) 16.5 (4.5–27.5) (31.8) 9 (1–17) (19.1) 0.004

Median anxiety score (IQR) (%

with score ≥11)∥
7 (4–10) 7.5 (4.75–10.25) (24.3) 8 (3–14) (34.8) 6 (3.75–8.25) (13.6) 6 (3–9) (19.1) 0.34

Median depression score (IQR)

(% with score ≥11)∥
4 (2–7) 4.5 (2–8) (13.5) 5 (2–7) (4.3) 4 (2–7) (4.5) 3 (1–6) (7.4) 0.104

Courses of oral corticosteroids
for asthma exacerbations, n/
case/yr

4.05 (2.33) 4.62 (0.27) 3.90 (0.38) 3.57 (0.49) 3.43 (0.27) 0.02

Hospital admissions for asthma,
n/case/yr 1.54 1.64 1.61 1.54 1.23 0.703

Failed clinic appointments, %
total appointments to DAC/yr 20.0 26.2 15.7 19.0 14.8 0.027

Definition of abbreviations: amp = amplitude; BDP = beclomethasone diproprionate; DAC = difficult asthma clinic; IQR = interquartile range;
JACS = Juniper Asthma Control Score; SD = standard deviation.

Anxiety and depression scores are obtained from the Hospital Anxiety and Depression Scale, a validated 14-point screening questionnaire. Scores
of greater than 11 for either domain are suggestive of clinically important symptoms (25). Boldface type denotes population statistics. Columns
headed “Cluster 3” and “Cluster 4” represent clusters not identified in the primary care asthma population.

*Comparison between clusters using analysis of variance for continuous variables and χ2 test for proportions. As for the other tables, significance
values for variables included in the cluster analysis are a product of the cluster algorithm and should not be further interpreted.

†Variables included in the cluster analysis.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.
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TABLE 4
Cluster Specific Outcomes for Longitudinal Study

Study Group

Cluster Outcomes Clinical
(n = 10)

Sputum
(n = 8) Significance

1: Obese female Δ Inhaled corticosteroid dose*/µg per day (SEM) −400 (328) −462 (271) 0.89

Severe exacerbation frequency over 12 mo (SEM) 1.40 (0.78) 1.50 (0.80) 0.93

Number commenced on oral corticosteroids 2 1 0.59

Clinical (n = 15) Sputum (n = 24)

2: Inflammation predominant Δ Inhaled corticosteroid dose*/µg per day (SEM) +753 (334) +241 (233) 0.22

Severe exacerbation frequency over 12 mo (SEM) 3.53 (1.18) 0.38 (0.13) 0.002

Number commenced on oral corticosteroids 2 9 0.17

Clinical (n = 7) Sputum (n = 4)

3: Early symptom predominant Δ Inhaled corticosteroid dose*/µg per day (SEM) +1,429 (429) −400 (469) 0.022

Severe exacerbation frequency over 12 mo (SEM) 5.43 (1.90) 2.50 (0.87) 0.198

Number commenced on oral corticosteroids 6 0 Undefined

A comparison of prespecified asthma outcomes between the two management protocols analyzed according to cluster allocation of subjects at
study entry.

*
Expressed as equivalent dose of beclomethasone.

Am J Respir Crit Care Med. Author manuscript; available in PMC 2014 April 21.

[Haldar et al., Am J Respir Crit Care Med, 2008]

Cluster
(found using baseline data)

Treatment strategy



Outline of today’s class
1. Overview of clustering (k-means algorithm)

• Application: discovering asthma subtypes

2. Overview of latent variable models and Bayesian 
networks

• Application: learning disease progression models



Bayesian networks
• A Bayesian network is specified by a directed acyclic

graph G=(V,E) with:
• One node i for each random variable Xi

• One conditional probability distribution (CPD) per node, p(xi | xPa(i)), 
specifying the variable’s probability conditioned on its parents’ 
values

• Corresponds 1-1 with a particular factorization of the joint 
distribution:

• Powerful framework for designing algorithms to perform 
probability computations

Bayesian networks
Reference: Chapter 3

A Bayesian network is specified by a directed acyclic graph
G = (V , E ) with:

1 One node i 2 V for each random variable X

i

2 One conditional probability distribution (CPD) per node, p(x
i

| xPa(i)

),
specifying the variable’s probability conditioned on its parents’ values

Corresponds 1-1 with a particular factorization of the joint
distribution:

p(x
1

, . . . x
n

) =
Y

i2V

p(x
i

| xPa(i))

Powerful framework for designing algorithms to perform probability
computations

David Sontag (NYU) Graphical Models Lecture 1, January 31, 2013 30 / 44



Bayesian networks enable use of domain 
knowledge

Will my car start this morning?

Heckerman et al., Decision-Theoretic Troubleshooting, 1995
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Bayesian networks enable use of domain 
knowledge

What is the differential diagnosis?

Beinlich et al., The ALARM Monitoring System, 1989



Returning to clustering example…

• Clusters may overlap
• Some clusters may be 
“wider” than others

• Can we model this 
explicitly?

• With what probability
is a point from a 
cluster?

[Next few slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer, Dan Weld, 
Vibhav Gogate, and Andrew Moore]



Clustering as latent variable model

• Try a probabilistic model!
• allows overlaps, clusters of different 

size, etc.

• Can tell a generative story for 
data
• P(Y)P(X|Y)

• Challenge: we need to 
estimate model parameters 
without labeled Ys

Y X1 X2

?? 0.1 2.1

?? 0.5 -1.1

?? 0.0 3.0

?? -0.1 -2.0

?? 0.2 1.5

… … …



Gaussian Mixture Models

µ1
µ2

µ3

• P(Y): There are k components

• P(X|Y): Each component generates data from a multivariate 
Gaussian with mean μi and covariance matrix Si

Each data point assumed to have been sampled from a generative 
process: 

1. Choose component i with probability P(y=i)     [Multinomial]

2. Generate datapoint ~ N(mi, Si )

By fitting this model 
(unsupervised learning), we can 
learn new insights about the data



Marginal likelihood for mixture of 
Gaussians

Component
Mixing coefficient

K=3



Unsupervised learning is computationally 
challenging

• Maximize marginal likelihood:
• argmaxθ Õj P(xj) = argmax Õj åk=1 P(Yj=k, xj)

• Almost always a hard problem!
• Usually no closed form solution

• Even when lgP(X,Y) is convex, lgP(X) generally isn’t…

• Many local optima

• Common approaches are gradient ascent and 
expectation maximization (EM) – both will just 
reach a local optima



The burden of chronic disease

• Chronic disease is a global burden
• Hundreds of millions of people
• Trillions of dollars spent
• Loss in life expectancy
• Loss in quality of life

• Example: Chronic Obstructive 
Pulmonary Disease (COPD)
• Impacts low-income population
• Key risk factors: smoking and air 

pollution
• Causes systemic illness

Chronic obstructive pulmonary disease. The Lancet, Volume 379, Issue 9823, Pages 1341 - 1351, 7 April 2012



COPD diagnosis & progression
• COPD diagnosis made using a breath test – fraction of air 

expelled in first second of exhalation < 70%
• Most doctors use GOLD criteria to stage the disease and 

measure its progression:

Chronic obstructive pulmonary disease. The Lancet, Volume 379, Issue 9823, Pages 1341 - 1351, 7 April 2012



Unsupervised learning of disease 
progression models

• Algorithm to learn a disease progression model from EHR data
• Generative model

• We demonstrate its use in
• Deriving a meaningful characterization of disease progression and stages
• Identifying the progression trajectory of individual patients

• More broadly, these models will be used to
• Provide decision support for early intervention
• Develop data-driven guidelines for care plan management
• Align patients across time, by disease stage, to enable comparative 

effectiveness research (e.g., of medications)

[Wang, Sontag, Wang, KDD 2014]



Goal: Learn from Electronic Health Records (EHR)

PID DAY_ID CLINICAL_EVENT ICD9_LONGNAME
000000 74053 305.1 Tobacco	Use	Disorder
000000 74053 496 Chronic	Airway	Obstruction,	Not	Elsewhere	Classified
000000 74053 733 Osteoporosis,	Unspecified
000000 74053 724.2 Lumbago
000000 74091 733 Osteoporosis,	Unspecified
000000 74148 733 Osteoporosis,	Unspecified
000000 74148 782.3 Edema
000000 74148 780.79 Other	Malaise	And	Fatigue

Mining electronic health records: towards better research applications and clinical care. Nat Rev Genet. 2012 May 2;13(6):395-405.



Challenges of disease progression modeling from 
EHRs

• Multiple covariates
• Progression heterogeneity

• No natural alignment between records with varied progression rates
• Missing data

• Doctors only document the relevant clinical context
• Incomplete records

• Might only be 3-6 years of data available for any one person
• Irregular visits

• Continuous-time model is needed
• Limited supervision

• No ground truth regarding the current stage of progression



The big picture: generative model for patient data

Markov	Jump	Process

Progression	Stages

K phenotypes,	each	
with	its	own	Markov	

chain

Observations

[Wang, Sontag, Wang, “Unsupervised learning of Disease Progression Models”, KDD 2014]

Diabetes

Depression

Lung cancer


