MACHINE LEARNING FOR HEALTHCARE 6.S897, HST.S53

Lecture 10: Interpretability of machine learning models

Prof. David Sontag MIT EECS, CSAIL, IMES

(Thanks to Zack Lipton for many of the slides)

Outline of today's class

1. The mythos of model interpretability in health care

- 2. Learning intelligible models
- 3. Post-hoc interpretability

What is interpretability?

- Many papers make axiomatic claims that some model is interpretable and therefore preferable
- But <u>what interpretability is</u> and precisely <u>what desiderata it serves</u> are seldom defined

Inconsistent definitions

- Papers use the words *interpretable, explainable, intelligible, transparent,* and *understandable*, both interchangeably (within papers) and inconsistently (across papers)
- One common thread, however, is that interpretability is something other than performance

We want good models

We also want interpretable models

The human wants something the metric doesn't. But, what?

Trust

- Does the model know when it's uncertain?
- Does the model make same mistakes as human?
 (e.g., would we be happy delegating decision making authority?)

• Are we *comfortable* with the model?

Trust: can you fool the classifier?

- Example from Szegedy et al., "Intriguing properties of neural networks", ICLR 2014
- Small perturbations of image do not affect visual semantics, but *do* affect classifications using neural networks

Causality

- We may want models to tell us something about the natural world
- Supervised models are trained simply to make predictions, but often used to take actions

- Caruana (2015) shows a mortality predictor (for use in triage) that assigns lower risk to asthma patients
- Naïve interpretations can be misleading

Causality: reminder from Lecture 3

 Why one *might* interpret weights learned by linear model causally:

- Here we care about γ , not about $Y_t(x)$ **Identification, not prediction**
- Danger: all bets are off with model misspecification

Causality: reminder from Lecture 3

- Suppose true data generating process, $x \in \mathbb{R}$: $Y_t(x) = \beta x + \gamma \cdot t + \delta \cdot x^2$ $ATE = \mathbb{E}[Y_1 - Y_0] = \gamma$
- Hypothesized linear model (misspecified): $\hat{Y}_t(x) = \hat{\beta}x + \hat{\gamma} \cdot t$ $\hat{\gamma} = \gamma + \delta \frac{\mathbb{E}[xt]\mathbb{E}[x^2] - \mathbb{E}[t^2]\mathbb{E}[x^2t]}{\mathbb{E}[xt]^2 - \mathbb{E}[x^2]\mathbb{E}[t^2]}$ The sign of the weight can flip from negative to positive (and vice-versa)!

Transferability

- The idealized training setups often differ from the real world
 - E.g., data leakage, errors in outcome definition from observational data
- Real problem may be non-stationary, noisier, etc.
- Want sanity-checks that the model doesn't depend on weaknesses in setup

Transferability: non-stationary

- Data created during health care is from a non-stationary process due to changes in:
 - Medical science
 - Incentives & regulations
 - Business processes

Transferability: non-stationary

Testing for covariate shift (wound healing):

Distinguish 2013 from pre-2013

Distinguish first 2/3 of 2013 from last 1/3 of 2013

(Slide credit: Ken Jung)

Transferability: non-stationary

Top 100 lab measurements over time

Time (in months, from 1/2005 up to 1/2014)

- Many ML models are trained in one place and deployed more broadly
- Example: Framingham coronary heart disease (CHD) risk score
 - Model based on 6 major risk factors: age, BP, smoking, diabetes, total cholesterol (TC), and high-density lipoprotein cholesterol (HDL-C)

CHD score sheet for men using TC or LDL-C categories.

Stop 7

	A	ge	
Ye	ears	LDL Pts	Chol Pts
30	-34	-1	[-1]
35	5-39	0	[0]
40)-44	1	[1]
45	5-49	2	[2]
50	-54	3	[3]
55	5-59	4	[4]
60	-64	5	[5]
65	5-69	6	[6]
70	-74	7	[7]
70 ep 2)-74	7	[7]
Chelong Kalo	LDI	C	St. S. Car
(mg/dl)	(mmol/L)	LDL Pts	
<100	<2.59	-3	
100-129	2.60-3.36	0	
100 150	2 27 4 14	0	

Chol Pts

[-3]

[0] [1]

[2]

[2] [1]

[0] [0]

[-2]

Cholesterol

HDL - C (mg/dl) (mmol/L) LDL Pts Chol Pts

0

0

-1

160-190 4.15-4.92 1

(mg/dl) (mmol/L)

160-199 4.15-5.17

200-239 5.18-6.21

240-279 6.22-7.24

35-44 0.91-1.16 45-49

1.17-1.29

1.30-1.55

≥1.56

<160 <4.14

<u>≥</u>190

>280 Step 3

50-59

≥60

Adding up	the points
Age	
LDL-C or Chol	
HDL - C	
Blood	
Pressure	
Diabetes	
Smoker	
Point total	

(sum from steps 1-6)

(determine CHD risk from point total)

	C	HD Risk	
LDL Pts	10 Yr	Chol Pts	10 Yr
Total	CHD Risk	Total	CHD Risk
<-3	1%		
-2	2%		
-1	2%	[<-1]	[2%]
0	3%	[0]	[3%]
1	4%	[1]	[3%]
2	4%	[2]	[4%]
3	6%	[3]	[5%]
4	7%	[4]	[7%]
5	9%	[5]	[8%]
6	11%	[6]	[10%]
7	14%	[7]	[13%]
8	18%	[8]	[16%]
9	22%	[9]	[20%]
10	27%	[10]	[25%]
11	33%	[11]	[31%]
12	40%	[12]	[37%]
13	47%	[13]	[45%]
≥14	>56%	[>14]	[>53%]

(compare to average person your age)

Step 9

	Cor	nparative Risk	
Age (years)	Average 10 Yr CHD Risk	Average 10 Yr Hard* CHD Risk	Low** 10 Yr CHD Risk
30-34	3%	1%	2%
35-39	5%	4%	3%
40-44	7%	4%	4%
45-49	11%	8%	4%
50-54	14%	10%	6%
55-59	16%	13%	7%
60-64	21%	20%	9%
65-69	25%	22%	11%
70-74	30%	25%	14%

Step 4					
122.64.82		Blood P	ressure	2010 2022	
Systolic		Dias	stolic (mm l	Hg)	
(mm Hg)	<80	80-84	85-89	90-99	≥100
<120	0 [0] pts				
120-129		0 [0] pts			
130-139			1 [1] pts	Constant Constant	
140-159	Service and the second			2 [2] pts	
>160					3 [3] pts

Note: When systolic and diastolic pressures provide different estimates for point scores, use the higher number

Step 5

	Key
Color	Relative Risk
green	Very low
white	Low
yellow	Moderate
rose	High
red	Very high

* Hard CHD events exclude angina pectoris

** Low risk was calculated for a person the same age, optimal blood pressure, LDL-C 100-129 mg/dL or cholesterol 160-199 mg/dl, HDL-C 45 mg/dL for men or 55 mg/dL for women, non-smoker, no diabetes

Risk estimates were derived from the experience of the Framingham Heart Study, a predominantly Caucasian population in Massachusetts, USA

Copyright © American Heart Association, Inc. All rights reserved.

1999

2000

2001

2002

2003

2004

- Many ML models are trained in one place and deployed more broadly
- Example: Framingham coronary heart disease (CHD) risk

2005

2006 2007 2008 2009 2010 2011

2012 2013 2014 2015 2016 2017

- Many ML models are trained in one place and deployed more broadly
- Example: Framingham coronary heart disease (CHD) risk score
 - 99% of Framingham participants are of European descent
 - How well does it generalize to a Chinese population?
- C-statistic (=AUC on censored data) on Chinese population is 0.705/0.742 (M/F)
- What else should we look at?

• Example: Framingham coronary heart disease (CHD) risk score (directly applied to Chinese population)

Figure 2. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the Original Framingham Functions

- Many ML models are trained in one place and deployed more broadly
- Example: Framingham coronary heart disease (CHD) risk score
 - 99% of Framingham participants are of European descent
 - How well does it generalize to a Chinese population?
- C-statistic (=AUC on censored data) 0.705/0.742 (M/F)
- Re-fit using local data only slightly improves C-statistic (=AUC on censored data), to 0.736/0.759 (M/F)

• Example: Framingham coronary heart disease (CHD) risk score (re-fit to Chinese population)

		CMCS	Fran	ningham*
Risk Factors	β		β	
Age	0.07		0.05	
Age squared	NA		NA	
Blood pressure Optimal	-0.51	_	0.09	
Normal				
High normal	0.21	_	0.42	
Stage 1 hypertension	0.33		0.66	
Stage 2-4 hypertension	0.77	_	0.90	
TC, mg/dL <160	-0.51		-0.38	
160-199				
200-239	0.07		0.57	
240-279	0.32		0.74	
≥280	0.52		0.83	
HDL-C, mg/dL <35	-0.25	-	0.61	
35-44	0.01		0.37	
45-49				
50-59	-0.07	_	0.00	
≥60	-0.40		-0.46	
Diabetes	0.09		0.53	
Smoking	0.62		0.73	

• Example: Framingham coronary heart disease (CHD) risk score (re-fit to Chinese population)

Figure 1. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the CMCS Functions

KEY QUESTION TO THINK ABOUT

How robust are your models to changes in the data?

Informativeness

- We may train a model to make a decision
- But it's real purpose is usually to aid a person in making a decision
- Thus an interpretation may be valuable for the extra bits it carries

I.e., ability to integrate model output with human prior beliefs

DISCUSS

What are examples where informativeness may be important for clinical decision making?

DISCUSS

Where does interpretability show up in your projects?

Outline of today's class

- 1. The mythos of model interpretability in health care
- 2. Learning intelligible models
- 3. Post-hoc interpretability

Generalized additive models (GAMs)

GAMs with pairwise interactions have the form:

$$g(E[y]) = \beta_0 + \sum_j f_j(x_j) + \sum_{i \neq j} f_{ij}(x_i, x_j)$$

 g is the link function (e.g. logistic, for binary data), and E[f] = 0.

Model	Pneumonia	Readmission
Logistic Regression	0.8432	0.7523
$\begin{array}{c} \text{GAM} \\ \text{GA}^2\text{M} \end{array}$	$0.8542 \\ 0.8576$	$0.7795 \\ 0.7833$
Random Forests LogitBoost	$0.8460 \\ 0.8493$	$0.7671 \\ 0.7835$

age

[Caruana et al., KDD '15]

Falling rule lists

Ordered list of if-then rules where:

1. It is a decision list, i.e. order matters

2. Probability of outcome decreases monotonically

	Condition	ns		Probability	Support
IF	Irregular	Shape AND Age ≥ 60	THEN malignancy risk is	85.22%	230
ELSE IF	Spiculate	edMargin AND Age ≥ 45	THEN malignancy risk is	78.13%	64
ELSE IF	T IllDefined	dMargin AND Age ≥ 60	THEN malignancy risk is	69.23%	39
EI			EN malignancy risk is	63.40%	153
EI	Method	Mean AUROC (STD)	EN malignancy risk is	39.68%	63
EI	FRL	.80 (.02)	EN malignancy risk is	26.09%	46
\mathbf{EI}	NF_FRL	.75(.02)	EN malignancy risk is	10.38%	366
	NF_GRD	.75(.02)			
	RF	.79(.03)	r mammographic mass	dataset.	
	SVM	.62 (.06)			
	Logreg	.82(.02)			
	Cart	.52(.01)			
Table	e 3: AUROO	C values for readmission d	lata		
			[Wang & Ru	din, AISTAT	⁻ S '15]

Supersparse linear integer models

Learn linear model where:

1. Coefficients are all integer

s.t.

2. As sparse as possible

Training objective: \min_{λ}

$$\frac{1}{N} \sum_{i=1}^{N} \mathbb{1} \left[y_i \boldsymbol{\lambda}^T \boldsymbol{x}_i \leq 0 \right] + C_0 \|\boldsymbol{\lambda}\|_0 + \epsilon \|\boldsymbol{\lambda}\|_1$$
$$\boldsymbol{\lambda} \in \mathcal{L}.$$

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1.	$age \ge 60$	4 points	
2.	hypertension	4 points	$ + \cdots$
3.	body mass index ≥ 30	2 points	$ + \cdots$
4.	body mass index ≥ 40	2 points	+ •••••
5.	female	-6 points	+
	ADD POINTS FROM ROWS 1 – 5	SCORE	$= \cdots$

[Ustun & Rudin, ML '16]

Motivation

- Complex (neural) models come at the cost of interpretability
- Applications often need interpretable justifications rationales.

this beer **pours ridiculously clear with tons of carbonation** that forms a rather impressive rocky head that settles slowly into a fairly dense layer of foam. **this is a real good lookin' beer**, unfortunately it gets worse from here ... first, **the aroma is kind of bubblegum-like and grainy.** next, the taste is sweet and grainy with an unpleasant bitterness in the finish. overall, the fat weasel is good for a fairly cheap buzz, but only if you like your beer grainy and bitter .

Ratings	
Look:	5 stars
Aroma:	2 stars

review with rationales

(Slide credit: Tao Lei)

Motivation

- Complex (neural) models come at the cost of interpretability
- Applications often need interpretable justifications rationales.

There is no evidence of extranodal extension. BREAST (RIGHT), EXCISIONAL BIOPSY: INVASIVE DUCTAL CARCINOMA (SEE TABLE #1). DUCTAL CARCINOMA IN-SITU, GRADE 1. ATYPICAL DUCTAL HYPERPLASIA. LOBULAR NEOPLASIA (ATYPICAL LOBULAR HYPERPLASIA). TABLE OF PATHOLOGICAL FINDINGS #1 INVASIVE CARCINOMA

prediction: high risk of recurring cancer

Doctors won't trust machines, unless evidence is provided

(Slide credit: Tao Lei)

... . . .

Model Architecture

generator specifies the distribution of rationales

(Slide credit: Tao Lei)

Model Architecture

encoder makes prediction given rationale

(Slide credit: Tao Lei)

Evaluation: Parsing Pathology Report

- Dataset: patients' pathology reports from hospitals such as MGH
- Task:check if a disease/symptom is positive in textbinary classification for each category
- Statistics: several thousand report for each category pathology report is long (>1000 words) but structured
- Model: use CNNs fro gen() and enc()

(Slide credit: Tao Lei)

Evaluation: Parsing Pathology Report

Category:	Accession Number <unk> Report Status Final Type Surgical Pathology Pathology Report:</unk>	F-score:
IDC	INVASIVE DUCTAL CARCINOMA poorly differentiated modified Bloom Richardson grade III III measuring at least 0 7cm in this limited specimen Central hyalinization is present within the tumor mass but no necrosis is noted No lymphovascular invasion is identified No in situ carcinoma is present Special studies were performed at an outside institution with the following results not reviewed ESTROGEN RECEPTOR NEGATIVE PROGESTERONE RECEPTOR NEGATIVE	98%
LCIS	Extensive LCIS DCIS Invasive carcinoma of left breast FINAL DIAGNOSIS BREAST LEFT LOBULAR CARCINOMA IN SITU PRESENT ADJACENT TO PREVIOUS BIOPSY SITE SEE NOTE CHRONIC INFLAMMATION ORGANIZING HEMORRHAGE AND FAT NECROSIS BIOPSY SITE NOTE There is a second area of focal lobular carcinoma in situ noted with pagetoid spread into ducts No vascular invasion is seen The margins are free of tumor No tumor seen in 14 lymph nodes examined BREAST left breast is a <unk> gram 25 x 28 x 6cm left</unk>	97%
LVI	FINAL DIAGNOSIS BREAST RIGHT EXCISIONAL BIOPSY INVASIVE DUCTAL CARCINOMA DUCTAL CARCINOMA IN SITU SEE TABLE 1 MULTIPLE LEVELS EXAMINED TABLE OF PATHOLOGICAL FINDINGS 1 INVASIVE CARCINOMA Tumor size <unk> X <unk> X 1 3cm Grade 2 Lymphatic vessel invasion Present Blood vessel invasion Not identified Margin of invasive carcinoma Invasive carcinoma extends to less than 0 2cm from the inferior margin of the specimen in one focus Location of ductal carcinoma in situ</unk></unk>	84%

(Slide credit: Tao Lei)

Outline of today's class

- 1. The mythos of model interpretability in health care
- 2. Learning intelligible models
- 3. Post-hoc interpretability

Compiling to a simpler model

• **Key idea:** use complex model (e.g. neural network) to train, then compile to a simpler model

[Che et al., arXiv:1512.03542, '15]

Compiling to a simpler model

• **Key idea:** use complex model (e.g. neural network) to train, then compile to a simpler model

Method		Task			
		MOR		VFD	
		AUC	AUC(std)	AUC	AUC(std)
Baseline	SVM	0.6431	0.059	0.7248	0.056
	LR	0.6888	0.068	0.7602	0.053
	DT	0.5965	0.081	0.6024	0.044
	GBT	0.7233	0.065	0.7630	0.051
NN-based	DNN	0.7288	0.084	0.7756	0.053
	SDA	0.7313	0.083	0.7211	0.051
	LSTM	0.7726	0.062	0.7720	0.061
	LR-DNN	0.7300	0.084	0.7759	0.052
	LR-SDA	0.7459	0.068	0.7818	0.051
	LR-LSTM	0.7658	0.063	0.7665	0.063
Mimic	GBTmimic-DNN	0.7574	0.064	0.7835	0.054
	GBTmimic-SDA	0.7382	0.084	0.7194	0.049
	GBTmimic-LSTM	0.7668	0.059	0.7357	0.054
	GBTmimic-LR-DNN	0.7673	0.070	0.7862	0.058
	GBTmimic-LR-SDA	0.7793	0.066	0.7818	0.049
	GBTmimic-LR-LSTM	0.7555	0.067	0.7524	0.060

[Che et al., arXiv:1512.03542, '15]

LIME: Local Interpretable Model-Agnostic Explanations

- 1. Sample points around x_i
- 2. Use complex model to predict labels for each sample
- 3. Weigh samples according to distance to x_i
- 4. Learn new simple model on weighted samples
- 5. Use simple model to explain

(Slide credit: Marco Tulio Ribeiro)

[Ribeiro et al., KDD '16]