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Outline of today’s class
1. The mythos of model interpretability in health care
2. Learning intelligible models
3. Post-hoc interpretability



What is interpretability?
• Many papers make axiomatic claims that 
some model is interpretable and therefore 
preferable

• But what interpretability is and precisely 
what desiderata it serves are seldom 
defined

(Slide credit: Zachary Lipton)



Inconsistent definitions
• Papers use the words interpretable, 
explainable, intelligible, transparent, and 
understandable, both interchangeably 
(within papers) and inconsistently (across 
papers)

• One common thread, however, is that 
interpretability is something other than 
performance

(Slide credit: Zachary Lipton)



We want good models

(Slide credit: Zachary Lipton)

We want good models

Evaluation 
Metric



We also want interpretable models

(Slide credit: Zachary Lipton)

We also want interpretable 
models

Evaluation 
Metric

Interpretation

The human wants something the metric doesn’t. But, what?



Trust

(Slide credit: Zachary Lipton)

• Does the model know when it’s 
uncertain?

• Does the model make same 
mistakes as human?
(e.g., would we be happy 
delegating decision making 
authority?)

• Are we comfortable with the 
model?

Trust

• Does the model know  
when it’s uncertain? 

• Does the model make  
same mistakes as human? 

• Are we comfortable  
with the model?



Trust: can you fool the classifier?
• Example from Szegedy et al., “Intriguing properties of 

neural networks”, ICLR 2014
• Small perturbations of image do not affect visual 

semantics, but do affect classifications using neural 
networks

increasing the robustness and convergence speed of the models [9, 13]. These deformations are,
however, statistically inefficient, for a given example: they are highly correlated and are drawn from
the same distribution throughout the entire training of the model. We propose a scheme to make this
process adaptive in a way that exploits the model and its deficiencies in modeling the local space
around the training data.

We make the connection with hard-negative mining explicitly, as it is close in spirit: hard-negative
mining, in computer vision, consists of identifying training set examples (or portions thereof) which
are given low probabilities by the model, but which should be high probability instead, cf. [5]. The
training set distribution is then changed to emphasize such hard negatives and a further round of
model training is performed. As shall be described, the optimization problem proposed in this work
can also be used in a constructive way, similar to the hard-negative mining principle.

4.1 Formal description

We denote by f : Rm �! {1 . . . k} a classifier mapping image pixel value vectors to a discrete
label set. We also assume that f has an associated continuous loss function denoted by loss

f

:

Rm ⇥ {1 . . . k} �! R+. For a given x 2 Rm image and target label l 2 {1 . . . k}, we aim to solve
the following box-constrained optimization problem:

• Minimize krk2 subject to:
1. f(x+ r) = l

2. x+ r 2 [0, 1]

m

The minimizer r might not be unique, but we denote one such x + r for an arbitrarily chosen
minimizer by D(x, l). Informally, x + r is the closest image to x classified as l by f . Obviously,
D(x, f(x)) = f(x), so this task is non-trivial only if f(x) 6= l. In general, the exact computation
of D(x, l) is a hard problem, so we approximate it by using a box-constrained L-BFGS. Concretely,
we find an approximation of D(x, l) by performing line-search to find the minimum c > 0 for which
the minimizer r of the following problem satisfies f(x+ r) = l.

• Minimize c|r|+ loss
f

(x+ r, l) subject to x+ r 2 [0, 1]

m

This penalty function method would yield the exact solution for D(X, l) in the case of convex
losses, however neural networks are non-convex in general, so we end up with an approximation in
this case.

4.2 Experimental results

Our “minimimum distortion” function D has the following intriguing properties which we will sup-
port by informal evidence and quantitative experiments in this section:

1. For all the networks we studied (MNIST, QuocNet [10], AlexNet [9]), for each sam-
ple, we have always managed to generate very close, visually hard to distinguish, ad-
versarial examples that are misclassified by the original network (see figure 5 and
http://goo.gl/huaGPb for examples).

2. Cross model generalization: a relatively large fraction of examples will be misclassified by
networks trained from scratch with different hyper-parameters (number of layers, regular-
ization or initial weights).

3. Cross training-set generalization a relatively large fraction of examples will be misclassi-
fied by networks trained from scratch on a disjoint training set.

The above observations suggest that adversarial examples are somewhat universal and not just the
results of overfitting to a particular model or to the specific selection of the training set. They also
suggest that back-feeding adversarial examples to training might improve generalization of the re-
sulting models. Our preliminary experiments have yielded positive evidence on MNIST to support
this hypothesis as well: We have successfully trained a two layer 100-100-10 non-convolutional neu-
ral network with a test error below 1.2% by keeping a pool of adversarial examples a random subset
of which is continuously replaced by newly generated adversarial examples and which is mixed into
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(a) (b)

Figure 5: Adversarial examples generated for AlexNet [9].(Left) is a correctly predicted sample, (center) dif-
ference between correct image, and image predicted incorrectly magnified by 10x (values shifted by 128 and
clamped), (right) adversarial example. All images in the right column are predicted to be an “ostrich, Struthio

camelus”. Average distortion based on 64 examples is 0.006508. Plase refer to http://goo.gl/huaGPb
for full resolution images. The examples are strictly randomly chosen. There is not any postselection involved.

(a) (b)

Figure 6: Adversarial examples for QuocNet [10]. A binary car classifier was trained on top of the last layer
features without fine-tuning. The randomly chosen examples on the left are recognized correctly as cars, while
the images in the middle are not recognized. The rightmost column is the magnified absolute value of the
difference between the two images.

the original training set all the time. We used weight decay, but no dropout for this network. For
comparison, a network of this size gets to 1.6% errors when regularized by weight decay alone and
can be improved to around 1.3% by using carefully applied dropout. A subtle, but essential detail
is that we only got improvements by generating adversarial examples for each layer outputs which
were used to train all the layers above. The network was trained in an alternating fashion, maintain-
ing and updating a pool of adversarial examples for each layer separately in addition to the original
training set. According to our initial observations, adversarial examples for the higher layers seemed
to be significantly more useful than those on the input or lower layers. In our future work, we plan
to compare these effects in a systematic manner.

For space considerations, we just present results for a representative subset (see Table 1) of the
MNIST experiments we performed. The results presented here are consistent with those on a larger
variety of non-convolutional models. For MNIST, we do not have results for convolutional mod-
els yet, but our first qualitative experiments with AlexNet gives us reason to believe that convolu-
tional networks may behave similarly as well. Each of our models were trained with L-BFGS until
convergence. The first three models are linear classifiers that work on the pixel level with various
weight decay parameters �. All our examples use quadratic weight decay on the connection weights:
loss

decay

= �

P
w

2
i

/k added to the total loss, where k is the number of units in the layer. Three
of our models are simple linear (softmax) classifier without hidden units (FC10(�)). One of them,
FC10(1), is trained with extremely high � = 1 in order to test whether it is still possible to generate
adversarial examples in this extreme setting as well.Two other models are a simple sigmoidal neural
network with two hidden layers and a classifier. The last model, AE400-10, consists of a single layer
sparse autoencoder with sigmoid activations and 400 nodes with a Softmax classifier. This network
has been trained until it got very high quality first layer filters and this layer was not fine-tuned. The
last column measures the minimum average pixel level distortion necessary to reach 0% accuracy

on the training set. The distortion is measure by
qP

(x0
i�xi)2

n

between the original x and distorted

6

Original: Perturbed:

Correctly
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Causality

(Slide credit: Zachary Lipton)

• We may want models to tell us 
something about the natural world

• Supervised models are trained simply 
to make predictions, but often used to 
take actions

• Caruana (2015) shows a mortality 
predictor (for use in triage) that 
assigns lower risk to asthma patients

• Naïve interpretations can be 
misleading

Causality
• We may want models to  

tell us something about  
the natural world  

• Supervised models are  
trained simply to make  
predictions, but often used to take actions 

• Caruana (2015) shows a mortality predictor (for use 
in triage) that assigns lower risk to asthma patients



Causality: reminder from Lecture 3
• Why one might interpret weights learned by linear 
model causally:

	
• Here we care about 𝛾, not about 𝑌$ 𝑥
Identification, not prediction

• Danger: all bets are off with model misspecification
	

	𝐴𝑇𝐸 = 𝔼 𝑌+ 𝑥 	− 𝑌- 𝑥 = 𝛾

𝑌$ 𝑥 = 	𝛽/𝑥	 + 𝛾 ⋅ 𝑡 + 𝜖$	
𝔼 𝜖$ = 0



Causality: reminder from Lecture 3
• Suppose true data generating process, 𝑥 ∈ ℝ:

𝐴𝑇𝐸 = 𝔼 𝑌+ − 𝑌- = 𝛾
• Hypothesized linear model (misspecified):

	

𝑌$ 𝑥 = 	𝛽𝑥	 + 𝛾 ⋅ 𝑡 + 𝛿 ⋅ 𝑥8

𝑌$9 𝑥 = 𝛽:𝑥 + 𝛾; ⋅ 𝑡

𝛾; = 𝛾 + 𝛿
𝔼 𝑥𝑡 𝔼 𝑥8 − 𝔼[𝑡8]𝔼[𝑥8𝑡]
𝔼 𝑥𝑡 8 − 𝔼[𝑥8]𝔼[𝑡8]

The sign
of the weight
can flip from
negative to
positive (and
vice-versa)!



Transferability

(Slide credit: Zachary Lipton)

• The idealized training setups often 
differ from the real world
• E.g., data leakage, errors in outcome 

definition from observational data

• Real problem may be non-stationary, 
noisier, etc.

• Want sanity-checks that the model 
doesn’t depend on weaknesses in 
setup



Transferability: non-stationary
• Data created during health care is from a 
non-stationary process due to changes in:
• Medical science
• Incentives & regulations
• Business processes

(Slide credit: Ken Jung)



Transferability: non-stationary
• Testing for covariate shift (wound healing):

Testing for covariate shift

❖ Fit a model to 
distinguish 2013 vs 
pre-2013 samples

❖ 0.98 AUC on test set
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Using just data from 2013

❖ Train a model from first 
two-thirds of 2013 to 
predict on last third

❖ 29k train, 14k test (1/3 
data)

❖ AUC of 0.863
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ROC − delayed wound healing w/2013 data only

Distinguish 2013 from pre-2013 Distinguish first 2/3 of 2013 from
last 1/3 of 2013

(Slide credit: Ken Jung)



Time (in months, from 1/2005 up to 1/2014)

La
bs

Top 100 lab measurements over time

Transferability: non-stationary



Case study on transferability: 
Framingham CHD risk score
• Many ML models are trained in one place and deployed 

more broadly
• Example: Framingham coronary heart disease (CHD) risk 

score
• Model based on 6 major risk factors: age, BP, smoking, diabetes, 

total cholesterol (TC), and high-density lipoprotein cholesterol 
(HDL-C)

[Wilson et al., Circulation, 1998]



CHD score sheet for men using TC or LDL-C categories. 

Peter W. F. Wilson et al. Circulation. 1998;97:1837-1847

Copyright © American Heart Association, Inc. All rights reserved.



Case study on transferability: 
Framingham CHD risk score
• Many ML models are trained in one place and deployed 

more broadly
• Example: Framingham coronary heart disease (CHD) risk 

score



Case study on transferability: 
Framingham CHD risk score
• Many ML models are trained in one place and deployed 

more broadly
• Example: Framingham coronary heart disease (CHD) risk 

score
• 99% of Framingham participants are of European descent
• How well does it generalize to a Chinese population?

• C-statistic (=AUC on censored data) on Chinese 
population is 0.705/0.742 (M/F)

• What else should we look at?

[Liu et al., JAMA ‘04]



Case study on transferability: 
Framingham CHD risk score
• Example: Framingham coronary heart disease (CHD) risk 

score (directly applied to Chinese population)

tained in the CMCS cohort. A total of
19.4% of men and 13.8% of women re-
ported physical activity (defined as
physical activity regularly during off
hours at least once per week and last-
ing more than 20 minutes each time).
Those who reported less exercise also
tended to have higher BP, higher glu-
cose levels, and lower HDL-C levels. Af-
ter adjusting for these factors, the as-
sociation of exercise with CHD was not
significant (data available from
authors). Performance of the func-
tions were compared in urban vs rural
residents. Performance of the CMCS
and recalibrated Framingham func-
tions for urban vs rural men and women
were all very similar, with overlap-
ping 95% CIs (data available from
authors).

To assess the effect of the portion of
the study population that had only 3
years of follow-up, a separate model was
created after exclusion of the partici-
pants who dropped out. The RRs, 10-
year CHD rates, and prediction capa-
bilities did not differ from the current
cohort. Nevertheless, the total person-
years of follow-up and CHD events were
reduced and the 95% CIs for some risk
factor categories were wider after the
exclusion (data available from authors).

COMMENT
In the present analysis, we tested the
performance of the Framingham func-
tions in a large Chinese population,
both directly and after recalibration, and
compared them with the usefulness of
functions derived from the Chinese co-
hort itself to determine absolute risk of
CHD. Estimation of absolute risk of
CHD to treat and prevent CHD8-11 com-
monly relies on prediction models de-
rived from the experience of prospec-
tive cohort studies. Although prediction
algorithms developed by Framingham
investigators have been widely adopted
to formulate clinical guidelines in the
United States and elsewhere,12-14 the
Framingham functions have overesti-
mated CHD risk in some populations,
leading to concern that it is not appro-
priate to generalize the results to other
populations.15,16,30 Framingham func-

Figure 1. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the CMCS
Functions
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Figure 2. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the Original
Framingham Functions
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Figure 3. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the
Recalibrated Framingham Functions
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CHD RISK ASSESSMENT IN A CHINESE POPULATION

2596 JAMA, June 2, 2004—Vol 291, No. 21 (Reprinted) ©2004 American Medical Association. All rights reserved.

Downloaded From: http://jamanetwork.com/pdfaccess.ashx?url=/data/journals/jama/4930/ by a Massachusetts Institute of Technology User  on 04/19/2017

[Liu et al., JAMA ‘04]



Case study on transferability: 
Framingham CHD risk score
• Many ML models are trained in one place and deployed 

more broadly
• Example: Framingham coronary heart disease (CHD) risk 

score
• 99% of Framingham participants are of European descent
• How well does it generalize to a Chinese population?

• C-statistic (=AUC on censored data) 0.705/0.742 (M/F)
• Re-fit using local data only slightly improves C-statistic 

(=AUC on censored data), to 0.736/0.759 (M/F)

[Liu et al., JAMA ‘04]



Case study on transferability: 
Framingham CHD risk score
• Example: Framingham coronary heart disease (CHD) risk 

score (re-fit to Chinese population)

confidence interval [CI], 0.696-
0 .776) and 0.759 (95% CI,
0.699-0.818), respectively, showing
good ability to distinguish cases from
noncases. In the calibration, the Hos-
mer-Lemeshow !2 was 12.6 for men
(P=.13) and 14.2 for women (P=.08),
showing that the actual CHD rates in
the CMCS cohort were similar to the
event rates predicted by CMCS func-
tions (FIGURE 1).

Original Framingham Functions. In
the original Framingham functions, the
" coefficients in the Framingham Cox
model, mean values of the risk fac-
tors, and mean incidence rates in the
Framingham cohort were used di-
rectly. In the discriminatory analysis,
the original Framingham functions
separated cases from noncases in the
CMCS cohort nearly as well as the
CMCS functions. The AUROCs were
0.705 (95% CI, 0.665-0.746) for men
and 0.742 (95% CI, 0.686-0.798) for

women. However, in calibration, the
original Framingham functions statis-
tically overestimated the event rates ob-
served in the CMCS cohort. The Hos-
mer-Lemeshow !2 was 645.9 for men
(P# .001) and 147.6 for women
(P#.001) (FIGURE 2). Larger differ-
ences were observed in higher deciles.
For example, in the 10th decile in men,
the predicted rate was 20% and the ac-
tual rate was only 3%.

Recalibrated Framingham Func-
tions. In the recalibrated Framing-
ham functions, the " coefficients were
taken from the Framingham Cox
model, but mean values from the CMCS
cohort were used for the risk factors and
the mean incidence rates. Recalibra-
tion did not affect the discriminatory
ability but improved the calibration sub-
stantially, especially in women. The !2

was 31.5 for men (P#.001) and 16.9
for women (P=.03) (FIGURE 3). The
largest difference between the actual

rate and the predicted rate after reca-
libration was 1.5% (in the 10th decile
in men), compared with the differ-
ence of 17% for the original Framing-
ham functions.

Additional Analyses
The prevalence of body mass index of
at least 25 was 33.5% in men and 33.9%
in women. When body mass index (cal-
culated as weight in kilograms di-
vided by the square of height in me-
ters) was included in the CMCS model,
the RR for body mass index of 25 or
higher was 1.29 for men and 1.68 for
women, both nonsignificant. More-
over, RRs for diabetes, TC, HDL-C, and
BP were all reduced after including body
mass index. The AUROC had a non-
significant increase (from 0.736 to
0.739 in men and from 0.759 to 0.763
in women) and the calibration did not
change significantly (data available from
authors). Data on exercise were ob-

Table 3. Cox Regression Coefficients and RRs for CHD Risk Factors in Men and Women in the CMCS and Framingham Cohorts

Risk Factors

Men Women

CMCS Framingham* CMCS Framingham*

" RR (95% CI) " RR (95% CI) " RR (95% CI) " RR (95% CI)
Age 0.07 1.08 (1.05-1.10)† 0.05 1.05 (1.04-1.07) 0.07 1.07 (1.03-1.11) 0.17 1.19 (0.97-1.45)
Age squared NA NA NA −0.001
Blood pressure

Optimal −0.51 0.60 (0.34-1.05) 0.09 1.10 (0.67-1.82) −0.50 0.61 (0.26-1.38) −0.74 0.48 (0.22-1.05)
Normal Reference Reference Reference Reference
High normal 0.21 1.24 (0.69-2.20) 0.42 1.53 (0.98-2.36) −0.87 0.42 (0.12-1.53) −0.37 0.69 (0.34-1.42)
Stage 1 hypertension 0.33 1.39 (0.84-2.31) 0.66 1.93 (1.28-2.92) 0.34 1.40 (0.64-3.08) 0.22 1.24 (0.69-2.24)
Stage 2-4 hypertension 0.77 2.16 (1.27-3.68) 0.90 2.45 (1.59-3.79) 0.47 1.60 (0.70-3.67) 0.61 1.84 (1.00-3.39)

TC, mg/dL
#160 −0.51 0.60 (0.37-0.98) −0.38 0.69 (0.31-1.52) 0.18 1.19 (0.58-2.44) 0.21 1.23 (0.27-5.64)
160-199 Reference Reference Reference Reference
200-239 0.07 1.08 (0.71-1.63)† 0.57 1.77 (1.25-2.50) 0.13 1.14 (0.55-2.36) 0.44 1.55 (0.81-2.96)
240-279 0.32 1.37 (0.74-2.55) 0.74 2.10 (1.43-3.10) 0.14 1.15 (0.39-3.41) 0.56 1.74 (0.90-3.40)
$280 0.52 1.68 (0.67-4.20) 0.83 2.29 (1.39-3.76) 1.67 5.29 (2.08-13.45) 0.89 2.44 (1.21-4.93)

HDL-C, mg/dL
#35 −0.25 0.78 (0.35-1.74)† 0.61 1.84 (1.17-2.88) 0.62 1.86 (0.71-4.88) 0.73 2.08 (1.00-4.31)
35-44 0.01 1.01 (0.60-1.70) 0.37 1.45 (0.94-2.21) 0.30 1.35 (0.65-2.81) 0.60 1.82 (1.05-3.16)
45-49 Reference Reference 0.08 1.09 (0.47-2.49) 0.60 1.82 (1.05-3.14)
50-59 −0.07 0.93 (0.56-1.55) 0.00 1.00 (0.62-1.60) Reference Reference
$60 −0.40 0.67 (0.39-1.15) −0.46 0.63 (0.34-1.18) −0.78 0.46 (0.21-1.03) −0.54 0.58 (0.33-1.02)

Diabetes 0.09 1.09 (0.57-2.08) 0.53 1.69 (1.11-2.57) 0.18 1.20 (0.43-3.35) 0.87 2.38 (1.40-4.06)
Smoking 0.62 1.86 (1.31-2.64) 0.73 2.07 (1.60-2.68) −0.95 0.39 (0.05-2.82)† 0.98 2.65 (1.77-3.97)
Abbreviations: CI, confidence interval; CMCS indicates Chinese Multi-provincial Cohort Study; HDL-C, high-density lipoprotein cholesterol; NA, not applicable; RR, relative risk;

TC, total cholesterol.
SI conversions: To convert HDL-C and TC to mmol/L, multiply by 0.0259.
*Data for the Framingham cohort are from D’Agostino et al.7
†Relative risk in the CMCS cohort is significantly different from that in the Framingham cohort (P#.10).

CHD RISK ASSESSMENT IN A CHINESE POPULATION

©2004 American Medical Association. All rights reserved. (Reprinted) JAMA, June 2, 2004—Vol 291, No. 21 2595

Downloaded From: http://jamanetwork.com/pdfaccess.ashx?url=/data/journals/jama/4930/ by a Massachusetts Institute of Technology User  on 04/19/2017

[Liu et al., JAMA ‘04]



Case study on transferability: 
Framingham CHD risk score
• Example: Framingham coronary heart disease (CHD) risk 

score (re-fit to Chinese population)
tained in the CMCS cohort. A total of
19.4% of men and 13.8% of women re-
ported physical activity (defined as
physical activity regularly during off
hours at least once per week and last-
ing more than 20 minutes each time).
Those who reported less exercise also
tended to have higher BP, higher glu-
cose levels, and lower HDL-C levels. Af-
ter adjusting for these factors, the as-
sociation of exercise with CHD was not
significant (data available from
authors). Performance of the func-
tions were compared in urban vs rural
residents. Performance of the CMCS
and recalibrated Framingham func-
tions for urban vs rural men and women
were all very similar, with overlap-
ping 95% CIs (data available from
authors).

To assess the effect of the portion of
the study population that had only 3
years of follow-up, a separate model was
created after exclusion of the partici-
pants who dropped out. The RRs, 10-
year CHD rates, and prediction capa-
bilities did not differ from the current
cohort. Nevertheless, the total person-
years of follow-up and CHD events were
reduced and the 95% CIs for some risk
factor categories were wider after the
exclusion (data available from authors).

COMMENT
In the present analysis, we tested the
performance of the Framingham func-
tions in a large Chinese population,
both directly and after recalibration, and
compared them with the usefulness of
functions derived from the Chinese co-
hort itself to determine absolute risk of
CHD. Estimation of absolute risk of
CHD to treat and prevent CHD8-11 com-
monly relies on prediction models de-
rived from the experience of prospec-
tive cohort studies. Although prediction
algorithms developed by Framingham
investigators have been widely adopted
to formulate clinical guidelines in the
United States and elsewhere,12-14 the
Framingham functions have overesti-
mated CHD risk in some populations,
leading to concern that it is not appro-
priate to generalize the results to other
populations.15,16,30 Framingham func-

Figure 1. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the CMCS
Functions
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Figure 2. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the Original
Framingham Functions
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Figure 3. Ten-Year Prediction of CHD Events in CMCS Men and Women Using the
Recalibrated Framingham Functions
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KEY QUESTION TO THINK 
ABOUT
How robust are your models to 
changes in the data?



Informativeness

(Slide credit: Zachary Lipton)

• We may train a model to make a 
decision

• But it’s real purpose is usually to aid a 
person in making a decision

• Thus an interpretation may be 
valuable for the extra bits it carries

I.e., ability to integrate model output 
with human prior beliefs

Informativeness

• We may train a model 
to make a decision 

• But it’s real purpose is  
to aid a person in  
making a decision 

• Thus an interpretation 
may simply be valuable for the extra bits it carries 



DISCUSS
What are examples where 
informativeness may be important 
for clinical decision making?



DISCUSS
Where does interpretability show 
up in your projects?



Outline of today’s class
1. The mythos of model interpretability in health care
2. Learning intelligible models
3. Post-hoc interpretability



Generalized additive models (GAMs)
• GAMs with pairwise interactions have the form:

• g is the link function (e.g. logistic, for binary data), 
and E[f] = 0.

if the rule-based system had learned that asthma lowers risk,
certainly the neural nets had learned it, too. The rule-based
system was intelligible and modular, making it easy to recog-
nize and remove dangerous rules like the asthma rule. While
there are methods for repairing the neural nets so they do
not incorrectly predict that asthmatics are at lower risk and
thus less likely to need hospitalization, e.g., re-train without
asthmatics in the population, remove the asthma feature,
modify the targets for asthmatics to “1” in the data to re-
flect the care they received (unfortunately confounding care
with death), the decision was made to not use the neural nets
not because the asthma problem could not be solved, but be-
cause the lack of intelligibility made it di�cult to know what
other problems might also need fixing. Because the neural
nets were more accurate than the rules, it was possible that
the neural nets had learned other patterns that could put
some kinds of patients at risk if used in a clinical trial. For
example, perhaps pregnant women with pneumonia also re-
ceive aggressive treatment that lowers their risk compared
to the general population. The neural net might learn that
pregnancy lowers risk, and thus recommend not admitting
pregnant women, thus putting them at increased risk. In an
e↵ort to “do no harm”, the decision was made to go forward
only with models that were intelligible such as logistic regres-
sion, even if they had lower AUC than other unintelligible
models. The logistic regression model also learned that hav-
ing asthma lowered risk, but this could easily be corrected
by changing the weight on the asthma feature from negative
to positive (or to zero).

Jumping two decades forward to the present, we now
have a number of new learning methods that are very ac-
curate, but unfortunately also relatively unintelligible such
as boosted trees, random forests, bagged trees, kernelized-
SVMs, neural nets, deep neural nets, and ensembles of these
methods. Applying any of these methods to mission-critical
problems such as healthcare remains problematic, in part
because usually it is not ethical to modify (or randomize)
the care delivered to patients to collect data sets that will
not su↵er from the kinds of bias described above. Learning
must be done with the data that is available, not the data
one would want. But it is critical that models trained on
real-world data be validated prior to use lest some patients
be put at risk, which makes using the most accurate learning
methods challenging.

In this paper we describe the application of a learning
method based on high-performance generalized additive mod-
els [5, 6] to the pneumonia problem described above, and to
a modern, much larger problem predicting 30-day hospital
readmission. On both of these problems our GA2M models
yield state-of-the-art accuracy while remaining intelligible,
modular, and editable. We believe this class of models repre-
sents a significant step forward in training models with high
accuracy that are also intelligible. The main contributions of
this paper are that it: shows that GA2Ms yield competitive
accuracy on real problems; demonstrates that the learned
models are intelligible; demonstrates that the predictions
made by the model for individual cases (patients) also are
intelligible, and demonstrates how, because the models are
modular, they can be edited by experts.

The remainder of the paper is organized as follows. Sec-
tion 2 provides a brief introduction to GAM and GA2M.
Sections 3 and 4 present our case studies of training intelli-
gible GA2M model on the pneumonia and the 30-day read-

mission data, respectively. Section 5 discusses a wide range
of issues that arise when learning with intelligible models
and our general lessons for the research community.

2. INTELLIGIBLE MODELS
Let D = {(xi, yi)}N1 denote a training dataset of size N ,

where xi = (xi1, ..., xip) is a feature vector with p features
and yi is the target (response). We use xj to denote the jth
variable in the feature space.

Generalized additive models (GAMs) are the gold stan-
dard for intelligibility when low-dimensional terms are con-
sidered [4, 5, 6]. Standard GAMs have the form

g(E[y]) = �0 +
X

fj(xj), (1)

where g is the link function and for each term fj , E[fj ] = 0.
Generalized linear models (GLMs), such as logistic regres-
sion, are a special form of GAMs where each fj is restricted
to be linear. Since the contribution of a single feature to the
final prediction can be easily understood by examining fj ,
such models are considered intelligible.

To improve accuracy, pairwise interactions can be added
to standard GAMs, leading to a model called GA2Ms [6]:

g(E[y]) = �0 +
X

j

fj(xj) +
X

i 6=j

fij(xi, xj). (2)

Note that pairwise interactions are intelligible because they
can be visualized as a heat map. GA2M builds the best
GAM first and then detects and ranks all possible pairs of
interactions in the residuals. The top k pairs are then in-
cluded in the model (k is determined by cross-validation).

There are various methods to train GAMs and GA2Ms.
Each component can be represented using splines, leading to
an optimization problem which balances the smoothness of
splines and empirical error [7]. Other representations include
regression trees on a single or a pair of features. Empirical
study showed gradient boosting with bagging of shallow re-
gression trees yields as components very good accuracy [5].
Interested readers are referred to [5, 6] for details.2

3. CASE STUDY: PNEUMONIA RISK
In this case study we use one of the pneumonia datasets

discussed earlier in the motivation [3]. This dataset has
14,199 pneumonia patients. To facilitate comparison with
prior work, we use the same train and test set folds from the
earlier study: the train set contains 9847 patients and the
test set has 4352 patients (a 70:30 train:test split). There
are 46 features describing each patient. These range from
history features such as age and gender, to simple measure-
ments taken at a routine physical such as heart rate, blood
pressure, and respiration rate, to lab tests such as White
Blood Cell count (WBC) and Blood Urea Nitrogen (BUN),
to features read from a chest x-ray such as lung collapse or
pleural e↵usion. See Table 1 for a complete list.

As discussed earlier, the goal is to predict probability of
death (POD) so that patients at high risk can be admit-
ted to the hospital, while patients at low risk are treated as
outpatients.3 10.86% of the patients in the dataset (1542 pa-
tients) died from pneumonia. The GAM/GA2M models are
2Code is available at https://github.com/yinlou/mltk.
3Hospitals are dangerous places, particularly for patients
with impaired immune systems. Treating low-risk patients
as outpatients not only saves money, but is actually safer.

1722

Patient-history findings

chronic lung disease - age C
re-admission to hospital - gender -
admitted through ER - diabetes mellitus -
admitted from nursing home - asthma -
congestive heart failure - cancer -
ischemic heart disease - number of diseases C
cerebrovascular disease - history of seizures -
chronic liver disease - renal failure -
history of chest pain -

Physical examination findings

diastolic blood pressure C wheezing -
gastrointestinal bleeding - stridor -
respiration rate C heart murmur -
altered mental status - temperature C
heart rate C

Laboratory findings

liver function tests - BUN level C
glucose level C creatinine level C
potassium level C albumin level C
hematocrit C WBC count C
percentage bands C pH C
pO2 C pCO2 C
sodium level C

Chest X-ray findings

positive chest x-ray - lung infiltrate -
pleural e↵usion - pneumothorax -
cavitation/empyema - chest mass -
lobe or lung collapse -

Table 1: Pneumonia attributes, grouped by

type. Continuous features that will be shaped by

GAM/GA

2
M models are marked with a “C”.

trained on this data using 100 rounds of bagging. Bagging is
done to reduce overfitting, and to provide pseudo-confidence
intervals for the graphs in the intelligible model.

The AUC area for di↵erent models trained on this data are
shown in Table 2. On this dataset logistic regression achieves
AUC = 0.843, Random Forests achieves 0.846, LogitBoost
0.849, GAM 0.854, and GA2M is best with AUC = 0.857.4

The di↵erence in AUC between the methods is not huge (less
than 0.02), but it is reassuring to see the GAM/GA2Mmeth-
ods achieve the best accuracy on this problem. The im-
portant question is if the GAM/GA2M models are able to
achieve this accuracy while remaining intelligible?

Figure 1 shows 28 of the 56 terms in the GA2M model
for pneumonia. Unfortunately, the compact representation
necessary for the paper reduces intelligibility. For small
models like this with fewer than 100 terms we would pre-
fer to present all terms, possibly sorted by their importance
to the model. In the actual deployment, for each term we
would also show a histogram of data density for di↵erent
values of the feature, descriptive statistics about the fea-
ture, several di↵erent measures of term importance in the
model, and links to online resources that provide informa-
tion about the term, e.g., links to a hospital database, or
Wikipedia or WebMD pages that describe features, how they
are measured, what the normal ranges are, and what abnor-
mal values indicate. Because of space limitations we have
suppressed all of this auxiliary information (including some
axis labels!) and just present shape plots for some of the
more interesting terms. Presenting the terms in multicol-
umn format without the auxiliary information further hin-
ders intelligibility — the models are more readable when

4The GA2M model uses 10 of the 46⇤45/2 = 1035 possible
pairwise interaction terms (k chosen by cross-validation).

Model Pneumonia Readmission

Logistic Regression 0.8432 0.7523

GAM 0.8542 0.7795
GA2M 0.8576 0.7833

Random Forests 0.8460 0.7671
LogitBoost 0.8493 0.7835

Table 2: AUC for di↵erent learning methods on the

pneumonia and 30-day readmission tasks.

presented in sorted order as a scrollable list of graphs plus
auxiliary information.
The 1st term in the model is for age. Age (in years) on the

x-axis ranges from 18-106 years old (the pneumonia dataset
contains only adults). The vertical axis is the risk score
predicted by the model for patients as a function of age. The
risk score for this term varies from -0.25 for patients with age
less than 50, to a high of about 0.35 for patients age 85 and
above. The green errorbars are pseudo-errorbars of the risk
score predicted for each age: each errorbar is ±1 standard
deviation of the variation in the risk score measured by 100
rounds of bagging. We use ±1 standard deviation instead
of the standard error of the mean because it is well known
that bagging underestimates the variance of predictions from
complex models. We believe it is safer to be conservative
than to present unrealistically narrow confidence intervals.
(See the top of Figure 3(a) for an enlarged version of this
graph, and the discussion in Section 5.5 for more detailed
analysis of the age feature.)
The 2nd term in the model, asthma, is the one that caused

trouble in the CEHC study in the mid-90’s and prevented
clinical trials with the very accurate neural net model. The
GA2M model has found the same pattern discovered back
then: that having asthma lowers the risk of dying from pneu-
monia. As with the logistic regression and rule-based mod-
els trained then, but unlike with the neural net models, this
term is easy to recognize and fix in the GA2M model. We
can “repair” the model by eliminating this term (e↵ectively
setting the weight on this graph to zero), or by using hu-
man expertise to redraw the graph so that the risk score
for asthma=1 is positive, not negative. Because asthma is
boolean, it is not necessary to use a graph, and we could
present a weight and o↵set (RiskScore = w*hasAsthma +
b) instead. We prefer to use graphs for boolean terms like
asthma for three reasons: 1) it is necessary to show graphs
for features with multiple or continuous values such as age
as well as for interactions between features, and it is awk-
ward for the user to jump from terms presented as graphs to
terms presented as equations; 2) we find graphs provide an
intuitive display of risk where up implies higher risk, down
implies lower risk, and the magnitude of the change in risk is
captured by the distance moved; and 3) some users are not
as comfortable with numbers as they are with graphs, and
it is important that the model is intelligible to real users,
whatever their background.
The 3rd term in the model is BUN (Blood Urea Nitro-

gen) level. Most patients have BUN=0 because, as in many
medical datasets, if the variable is not measured or assumed
normal it is coded as 0. The model says risk is reduced
for patients where BUN was not measured, suggesting that
this test typically is not ordered for patients who appear
to be healthy. BUN levels below 30 appear to be low risk,
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Figure 1: 28 (of 56 total) components for the GA

2
M model trained on the pneumonia data. The line graphs

are terms that contain single features. The heat maps at the bottom are pairwise interaction terms. The

vertical scale on all line graphs are the same to facilitate rapid scanning of the relative contribution of each

term. The green errorbars are pseudo-errorbars from bagging. Boolean features such as asthma are presented

as graphs because this aids interpretation among other features that must be presented as graphs.
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Figure 1: 28 (of 56 total) components for the GA

2
M model trained on the pneumonia data. The line graphs

are terms that contain single features. The heat maps at the bottom are pairwise interaction terms. The

vertical scale on all line graphs are the same to facilitate rapid scanning of the relative contribution of each

term. The green errorbars are pseudo-errorbars from bagging. Boolean features such as asthma are presented

as graphs because this aids interpretation among other features that must be presented as graphs.
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Falling rule lists
• Ordered list of if-then rules where:

1. It is a decision list, i.e. order matters
2. Probability of outcome decreases monotonically

[Wang & Rudin, AISTATS ‘15]

Falling Rule Lists

Conditions Probability Support
IF IrregularShape AND Age � 60 THEN malignancy risk is 85.22% 230
ELSE IF SpiculatedMargin AND Age � 45 THEN malignancy risk is 78.13% 64
ELSE IF IllDefinedMargin AND Age � 60 THEN malignancy risk is 69.23% 39
ELSE IF IrregularShape THEN malignancy risk is 63.40% 153
ELSE IF LobularShape AND Density � 2 THEN malignancy risk is 39.68% 63
ELSE IF RoundShape AND Age � 60 THEN malignancy risk is 26.09% 46
ELSE THEN malignancy risk is 10.38% 366

Table 1: Falling rule list for mammographic mass dataset.

than by data-driven or algorithmic approaches. These
manually-created risk assessment tools are used in pos-
sibly every hospital; e.g., the TIMI scores, CHADS

2

score, Apache scores, and the Ranson score, to name a
few (Antman et al. , 2000; Morrow et al. , 2000; Gage
et al. , 2001; Knaus et al. , 1981, 1985, 1991; Ranson
et al. , 1974). These models can be computed without
a calculator, making them very practical as decision
aids. Of course, we aim for this level of interpretabil-
ity in purely data-driven classifiers, with no manual
feature selection or rounding coe�cients.

Algorithms that discretize the input space have gained
in popularity purely because they yield interpretable
models. Decision trees (Breiman et al. , 1984; Quinlan,
1986, 1993), as well as decision lists (Rivest, 1987), or-
ganize a collection of simple rules into a larger logical
structure, and are popular despite being greedy. In-
ductive logic programming (Muggleton & De Raedt,
1994) returns an unstructured set of conjunctive rules
such that an example is classified as positive if it sat-
isfies any of the rules in that set. An extremely sim-
ple way to induce a probabilistic model from the un-
ordered set of rules given by an ILP method is to place
them into a decision list (e.g., see Fawcett, 2008), or-
dering rules by empirical risk. This is also done in as-
sociative classification (e.g., see Thabtah, 2007). How-
ever, the resulting model cannot be expected to exhibit
good predictive performance, as its constituent rules
were chosen with a di↵erent objective.

Since it is possible that decision tree methods can pro-
duce results that are inconsistent with monotonicity
properties of the data, there is a subfield dedicated to
altering these greedy decision tree algorithms to obey
monotonicity properties (Ben-David, 1995; Feelders &
Pardoel, 2003; Altendorf et al. , 2005). Studies showed
that in many cases, no accuracy is lost in enforcing
monotonicity constraints, and that medical experts
were more willing to use the models with the mono-
tonicity constraints (Pazzani et al. , 2001).

Even with (what seem like) rather severe constraints
on the hypothesis space such as monotonicity or spar-
sity in the number of leaves and nodes, it still seems

that the set of accurate classifiers is often large enough
so that it contains interpretable classifiers (see Holte,
1993). Because the monotonicity properties we enforce
are much stronger than those of Ben-David (1995);
Feelders & Pardoel (2003); Altendorf et al. (2005)
(we are looking at monotonicity along the whole list
rather than for individual features), we do find that
accuracy is sometimes sacrificed, but not always, and
generally not by much. On the other hand, it is pos-
sible that our method gains a level of practicality and
interpretability that other methods simply cannot.

Interpretability is very context dependent (see Ko-
drato↵, 1994; Pazzani, 2000; Freitas, 2014; Huysmans
et al. , 2011; Allahyari & Lavesson, 2011; Martens &
Baesens, 2010; Rüping, 2006; Verbeke et al. , 2011;
Martens et al. , 2011), and no matter how one mea-
sures it in one domain, it can be di↵erent in the next
domain. A falling rule list used in medical practice has
the benefit that it can, in practice, be as sparse as de-
sired. Since it automatically stratifies patients by risk
in the order used for decision making, physicians can
choose to look at as much of the list as they need to
make a decision; the list is as sparse as one requires it
to be. If physicians only care about the most high risk
patients, they look only at the top few rules, and check
whether the patient obeys any of the top clauses.

The algorithm we provide for falling rule lists aims to
have the best of all worlds: accuracy, interpretability,
and computation. The algorithm starts with a statisti-
cal assumption, which is that we can build an accurate
model from pre-mined itemsets. This helps tremen-
dously with computation, and restricts us to build-
ing models with only interpretable building blocks (see
also Letham et al. , 2014; Wang et al. , 2014). Once the
itemsets are discovered, a Bayesian modeling approach
chooses a subset and permutation of the rules to form
the decision list. The user determines the desired size
of the rule list through a Bayesian prior. Our gener-
ative model is constructed so that the monotonicity
property is fully enforced (no “soft” monotonicity).

The code for fitting falling rule lists is available online1.

1http://web.mit.edu/rudin/www/falling_rule_list

Fulton Wang, Cynthia Rudin

Figure 1: Mean distance to true list decreases with
sample size.

by using a falling rule list instead of, say, a support vec-
tor machine, consistent with the observations of Holte
(1993) about very simple classifiers performing well.

Later in this section, we aim to quantify the loss in pre-
dictive power from Falling Rule Lists over other meth-
ods by using an out-of-sample predictive performance
evaluation. Specifically, we compare to several base-
line methods on standard publicly available datasets to
quantify the possible loss in predictive performance.

5.1 Predicting Hospital Readmissions

We applied Falling Rule Lists to preliminary readmis-
sions data being compiled through a collaboration with
a major hospital in the U.S. (Cronin et al. , 2014),
where the goal is to predict whether a patient will be
readmitted to the hospital with 30 days, using data
prior to their release. The dataset contains features
and binary readmissions outcomes for approximately
8,000 patients who had no prior history of readmis-
sions. The features are very detailed, and include as-
pects like “impaired mental status,” “di�cult behav-
ior,” “chronic pain,” “feels unsafe” and over 30 other
features that might be predictive of readmission. As
we will see, luckily a physician may not be required to
collect this amount of detailed information to assess
whether a given patient is at high risk for readmission.

For these experiments and the experiments in the next
section, no parameters were tuned in Falling Rule Lists
(FRL), and the global hyperparameters were chosen as
follows. We mined rules with a support of at least 5%
and a cardinality of at most 2 conditions per rule. We
assumed in the prior that conditioned on L, each rule
had an equal chance of being in the rule list. We set
the prior of {�l}|L to have noninformative and inde-
pendent distributions of gamma(1, 0.1), and the prior
expected length of the decision list, �, to be 8. We

Method Mean AUROC (STD)

FRL .80 (.02)
NF FRL .75 (.02)
NF GRD .75 (.02)

RF .79 (.03)
SVM .62 (.06)
Logreg .82 (.02)
Cart .52 (.01)

Table 3: AUROC values for readmission data

performed simulated annealing search for 5000 steps
with a constant temperature of 1 for simplicity.

We measured out-of-sample performance using the
AUROC from 5-fold cross validation where the MAP
decision list from training was used to predict on each
test fold in turn. We compared with SVM (with Radial
Basis Function kernels), `

2

regularized logistic regres-
sion (Ridge regression, denoted LogReg), CART, and
random forests (denoted RF), implemented in Python
using the scikit-learn package. For SVM and logis-
tic regression, hyperparameters were tuned with grid
search in nested cross validation.

As discussed, decision lists consisting of rules from
an inductive logic programming method are not ex-
pected to exhibit strong performance. We tested nFoil
(Landwehr et al. , 2005) with the default settings (max
number of clauses set to 2) to obtain a set of rules.
These rules were ordered in two di↵erent ways, to form
two additional comparison methods: 1. by the empir-
ical risk of each rule (denoted NF GRD), and 2. by
using the set of rules as the pre-mined rule set that
FRL accepts as input (denoted NF FRL). Note that
the risk probabilities in rule lists returned by NF GRD
are not necessarily decreasing monotonically, and that
not all of the nFoil rules are necessarily in the rule
list returned by NF FRL, since omission of a rule can
increase the posterior.

The AUROC’s for the di↵erent methods are in Table 3,
indicating that there was no loss in accuracy for using
Falling Rule Lists on this particular dataset. For all
of the training folds, the decision lists had a length of
either 6 or 7 – all very sparse.

Figure 2 shows ROC curves for all test folds for all
methods. The mean ROC curves are bolded. For this
particular dataset, SVM RBF and CART did not per-
form well. It is unclear why SVM did not perform
well, as cross-validation was performed for SVM; usu-
ally SVM’s perform well when cross-validated (though
it is definitely possible for them to have poor perfor-
mance on some datasets – on the other hand, CART
often performs poorly relative to other methods, in our
experience). As expected, the nFoil-based methods



Supersparse linear integer models
• Learn linear model where:

1. Coefficients are all integer
2. As sparse as possible

[Ustun & Rudin, ML ‘16]
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Fig. 6: ROC curve for SLIM, Lasso and Elastic Net instances that satisfy the sign and model size constraints.
For each method, we plot the instance that attains the highest 10-CV mean test TPR for 10-CV mean FPR
values of 5%, 10%, . . . , 95%. Note that we had to train 19 additional instances of SLIM to create this plot.

SLIM 4 age � 60 + 4 hypertension + 2 bmi � 30 + 2 bmi � 40 � 6 female � 1

Lasso 0.13 snoring + 0.12 hypertension � 0.26 female � 0.17

Elastic Net 0.03 snoring + 0.02 hypertension � 0.09 female � 0.02

Fig. 7: Score functions of the most sensitive predictive models that satisfied all three operational constraints.
The baseline models have very poor sensitivity as shown in Table 2.

PREDICT PATIENT HAS OBSTRUCTIVE SLEEP APNEA IF SCORE > 1

1. age � 60 4 points · · · · · ·
2. hypertension 4 points + · · · · · ·
3. body mass index � 30 2 points + · · · · · ·
4. body mass index � 40 2 points + · · · · · ·
5. female -6 points + · · · · · ·

ADD POINTS FROM ROWS 1 – 5 SCORE = · · · · · ·

Fig. 8: SLIM scoring system for sleep apnea screening. This model achieves a 10-CV mean test TPR/FPR of
61.4/20.9%, obeys all operational constraints, and was trained without parameter tuning. It also generalizes
well due to the simplicity of the hypothesis space: here the training TPR/FPR of the final model is 62.0/19.6%.

provide this kind of qualitative understanding due to their high level of sparsity and small integer coe�cients.
These qualities help users gauge the influence of each input variable with respect to the others, which is
especially important because humans can only handle a few cognitive entities at once (7 ± 2 according
to Miller 1984), and are seriously limited in estimating the association between three or more variables
(Jennings et al., 1982). Sparsity and small integer coe�cients also allow users to make quick predictions
without a computer or a calculator, which may help them understand how the model works by actively
using it to classify prototypical examples. Here, this process helped our collaborators come up with the
following simple rule-based explanation for our model predicted that a patient has OSA (i.e., when SCORE
> 1): “if the patient is male, predict OSA if age � 60 OR hypertension OR bmi � 30; if the patient is female,
predict OSA if bmi � 40 AND (age � 60 OR hypertension).”

4 Berk Ustun, Cynthia Rudin

2 Methodology

We start with a dataset of N i.i.d. training examples D
N

= {(x
i

, y

i

)}N
i=1

where x

i

2 X ✓ RP+1 denotes a
vector of features [1, x

i,1

, . . . , x

i,P

]T and y

i

2 Y = {�1, 1} denotes a class label. We consider linear models

of the form ŷ = sign(�T

x), where � = [�
0

,�

1

, . . . ,�

P

]T represents a vector of coe�cients and �

0

represents
an intercept term. We learn the coe�cients by solving an optimization problem of the form:

min
�

Loss (�;D
N

) + C · �(�)
s.t. � 2 L.

(1)

Here: the loss function Loss (�;D
N

) : RP+1⇥(X⇥Y)N ! R penalizes misclassifications; the coe�cient penalty
�(�) : RP+1 ! R induces soft qualities that are desirable but may be sacrificed for greater accuracy; the
coe�cient set L encodes hard qualities must be satisfied; and the trade-o↵ parameter C controls the balance
between accuracy and soft qualities. We assume: (i) the coe�cient set contains the null vector, 0 2 L; (ii)
the penalty is additively separable, �(�) =

P

P

j=0

�

j

(�
j

); (iii) the intercept is never penalized, �
0

(�
0

) = 0.
A Supersparse Linear Integer Model (SLIM) is a special case of the optimization in (1):
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s.t. � 2 L.
(2)

SLIM directly optimizes accuracy and sparsity by minimizing the 0–1 loss 1
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-norm k�k
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:=
P
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6= 0] respectively. The constraints usually restrict coe�cients to a finite set

of discrete values such as L = {�10, . . . , 10}P+1, and may include additional operational constraints such
as k�k

0

 10. SLIM includes a tiny `

1

-penalty ✏ k�k
1

in the objective for the sole purpose of restricting
coe�cients to coprime values.1 To be clear, the `

1

-penalty parameter ✏ is always set to a value that is
small enough to avoid `

1

-regularization (that is, ✏ is small enough to guarantee that SLIM never sacrifices
accuracy or sparsity to attain a smaller `

1

-penalty).
SLIM is designed to produce scoring systems that attain a pareto-optimal trade-o↵ between accuracy

and sparsity: when we minimize 0–1 loss and the `

0

-penalty, we only sacrifice classification accuracy to
attain higher sparsity, and vice versa. Minimizing the 0–1 loss produces scoring systems that are completely
robust to outliers and attain the best learning-theoretic guarantee on predictive accuracy (see e.g. Brooks,
2011, Nguyen and Sanner, 2013). Similarly, controlling for sparsity via `

0

-regularization prevents the ad-
ditional loss in accuracy due to `

1

-regularization (see Lin et al., 2008, for a discussion). In addition to
these performance benefits, minimizing an approximation-free object function over a finite set of discrete
coe�cients means that the free parameters in SLIM’s object have special properties.

Remark 1 If ✏ <

min (1/N,C0)

max

�2Lk�k1
and L is a finite subset of ZP+1 then the optimization of (2) will produce a

scoring system with coprime coe�cients without a↵ecting accuracy or sparsity:
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1 To illustrate the use of the `
1

-penalty, consider a classifier such as ŷ = sign (x
1

+ x
2

). If the objective in (2) only mini-
mized the 0–1 loss and an `

0

-penalty, then ŷ = sign (2x
1

+ 2x
2

) would have the same objective value as ŷ = sign (x
1

+ x
2

)
because it makes the same predictions and has the same number of non-zero coe�cients. Since coe�cients are restricted to
a finite discrete set, we add a tiny `

1

-penalty in the objective of (2) so that SLIM chooses the classifier with the smallest
(i.e. coprime) coe�cients, ŷ = sign (x

1

+ x
2

).

Training objective:



Neural attention

[Lei et al., EMNLP ‘16]

Motivation

• Complex (neural) models come at the cost of interpretability 

• Applications often need interpretable justifications — rationales.

2

this beer pours ridiculously clear with tons of carbonation that 

forms a rather impressive rocky head that settles slowly into a 

fairly dense layer of foam. this is a real good lookin' beer, 

unfortunately it gets worse from here ... first, the aroma is kind 

of bubblegum-like and grainy. next, the taste is sweet and 

grainy with an unpleasant bitterness in the finish. … … overall, 

the fat weasel is good for a fairly cheap buzz, but only if you like 

your beer grainy and bitter .

Ratings

Look:    5 stars

Aroma:  2 stars

review with rationales

(Slide credit: Tao Lei)



Neural attention

[Lei et al., EMNLP ‘16]

prediction: high risk of recurring cancer

There is no evidence of extranodal extension.  
BREAST (RIGHT), EXCISIONAL BIOPSY:  
INVASIVE DUCTAL CARCINOMA (SEE TABLE #1). DUCTAL 
CARCINOMA IN-SITU, GRADE 1. ATYPICAL DUCTAL 
HYPERPLASIA. LOBULAR NEOPLASIA (ATYPICAL 
LOBULAR HYPERPLASIA). TABLE OF PATHOLOGICAL 
FINDINGS #1 INVASIVE CARCINOMA  
 … …

Motivation

• Complex (neural) models come at the cost of interpretability 

• Applications often need interpretable justifications — rationales.

Doctors won’t trust machines, unless evidence is provided

3

(Slide credit: Tao Lei)



Neural attention

[Lei et al., EMNLP ‘16](Slide credit: Tao Lei)



Neural attention

[Lei et al., EMNLP ‘16](Slide credit: Tao Lei)



Neural attention

[Lei et al., EMNLP ‘16]

Evaluation:  Parsing Pathology Report

Dataset:  patients’ pathology reports from hospitals such 
as MGH

Task: check if a disease/symptom is positive in text 

binary classification for each category

Statistics: several thousand report for each category 

pathology report is long (>1000 words) but 
structured 

Model: use CNNs fro gen() and enc()

25
(Slide credit: Tao Lei)



Neural attention

[Lei et al., EMNLP ‘16]

Evaluation:  Parsing Pathology Report

LCIS 97%

FINAL DIAGNOSIS BREAST RIGHT EXCISIONAL BIOPSY INVASIVE 
DUCTAL CARCINOMA DUCTAL CARCINOMA IN SITU SEE TABLE 1 
MULTIPLE LEVELS EXAMINED TABLE OF PATHOLOGICAL FINDINGS 1 
INVASIVE CARCINOMA Tumor size <unk> X <unk> X 1 3cm Grade 2 
Lymphatic vessel invasion Present Blood vessel invasion Not 
identified Margin of invasive carcinoma Invasive carcinoma extends to 
less than 0 2cm from the inferior margin of the specimen in one focus 
Location of ductal carcinoma in situ …

LVI 84%

… Extensive LCIS DCIS Invasive carcinoma of left breast FINAL 
DIAGNOSIS BREAST LEFT LOBULAR CARCINOMA IN SITU PRESENT 
ADJACENT TO PREVIOUS BIOPSY SITE SEE NOTE CHRONIC 
INFLAMMATION ORGANIZING HEMORRHAGE AND FAT NECROSIS 
BIOPSY SITE NOTE There is a second area of focal lobular carcinoma in 
situ noted with pagetoid spread into ducts No vascular invasion is seen 
The margins are free of tumor No tumor seen in 14 lymph nodes 
examined BREAST left breast is a <unk> gram 25 x 28 x 6cm left …

Accession Number <unk>    Report Status Final  
Type Surgical Pathology  … Pathology Report:   
LEFT BREAST ULTRASOUND GUIDED CORE NEEDLE BIOPSIES … 
INVASIVE DUCTAL CARCINOMA poorly differentiated modified 
Bloom Richardson grade III III measuring at least 0 7cm in this limited 
specimen Central hyalinization is present within the tumor mass but no 
necrosis is noted No lymphovascular invasion is identified No in situ 
carcinoma is present Special studies were performed at an outside 
institution with the following results not reviewed ESTROGEN RECEPTOR 
NEGATIVE PROGESTERONE RECEPTOR NEGATIVE …

IDC 98%

F-score:Category:

(Slide credit: Tao Lei)



Outline of today’s class
1. The mythos of model interpretability in health care
2. Learning intelligible models
3. Post-hoc interpretability



Compiling to a simpler model
• Key idea: use complex model (e.g. neural 
network) to train, then compile to a simpler model

[Che et al., arXiv:1512.03542, ‘15]
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Network
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y
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Model𝒚𝒏𝒏
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Input

Target
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or

Figure 2: Training Pipeline for Mimic Method

After finishing the training procedure, we can directly apply the mimic model trained in the final step
to the original classification task. We compare these two different pipelines to investigate whether
utilizing the features extracted from the neural networks (Pipeline 1) will provide more benefits
than only taking the soft-labels from the neural networks (Pipeline 2), which is what existing mimic
methods usually do. These two pipelines will be evaluated and discussed with detailed experimental
results in Section 4.

Our interpretable mimic learning model using GBT has several advantages over existing (mimic)
methods. First, gradient boosting trees is good at maintaining the performance of the original com-
plex model such as deep networks by mimicing its predictions. Second, it provides better inter-
pretability than original model, from its decision rules and tree structures. Furthermore, using soft
targets from deep learning models avoids overfitting to the original data and provides good general-
izations, which can not be achieved by standard decision tree methods.

4 Experiments

We demonstrate the performance of our interpretable mimic learning framework on a real-world
healthcare dataset and compare it to the several methods introduced in the previous section. Our
experiments will help us to answer the following questions:

• How does our interpretable mimic learning perform when compared with state-of-the-art
deep learning and other machine learning methods?

• What are the interpretable features identified by our mimic learning framework?
• Do soft-labels from top layer of deep networks (Pipeline 2 in Section 3.5) obtain better

results than soft-labels of the same networks with Logistic Regression (Pipeline 1 in Sec-
tion 3.5) for prediction tasks?

• Do static features help in performance improvement in our mimic learning framework?

In the remainder of this section, we will describe the datasets, experimental design and discuss our
empirical results and interpretations to answer the above questions.

4.1 Dataset Descriptions

We conducted a series of experiments on VENT dataset [25]. This dataset consists of data from 398
patients with acute hypoxemic respiratory failure in the intensive care unit at Children’s Hospital
Los Angeles (CHLA). It contains a set of 27 static features, such as demographic information and
admission diagnoses, and another set of 21 temporal features (recorded daily), including monitoring
features and discretized scores made by experts, during the initial 4 days of mechanical ventilation.
Two of the time series features start from 0 in time step 0, so when we flatten time series and
concatenate all features together, we omit these two 0-valued features and obtain the input feature
vector with length 27 + 21 ⇥ 4 � 2 = 109. The missing value rate of this dataset is 13.43%, with
some patients/variables having a missing rate of > 30% . We perform simple imputation for filling
the missing values where we take the majority value for binary variables, and empirical mean for
other variables. Please see table 1 for a detailed summary of this dataset.

4.2 Experimental Design

We conduct two binary classification tasks on VENT dataset:

6

Pipeline



Compiling to a simpler model
• Key idea: use complex model (e.g. neural 
network) to train, then compile to a simpler model

[Che et al., arXiv:1512.03542, ‘15]

(a) GBT

LIS-D0 <= 2.8333
samples = 100.0%

MAP-D1 <= 17.3486
samples = 67.6%

True

PF-D0 <= 80.0
samples = 32.4%

False

PH-D1 <= 7.3376
samples = 63.8%

OI-D0 <= 8.4343
samples = 3.8%

samples = 17.6%
value = -0.0142

samples = 46.2%
value = -0.9477

samples = 0.9%
value = 0.0787

samples = 2.8%
value = 2.0221

PIP-D2 <= 24.875
samples = 17.3%

samples = 0.9%
value = -0.1231

samples = 16.4%
value = 1.8539

(b) GBTmimic-LR-SDA

(c) GBTmimic-LSTM
Figure 3: Important Decision Trees on MOR Task

Value of a leaf node: The prediction score of a sample from the corresponding decision rules (path).

application abilities in difficult practical applications and help domain experts have a better under-
standing of these models.
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4.4 Quantitative Results

Table 2 shows the prediction performance comparison of the models introduced in Section 4.3. We
observe that for both the classification tasks (MOR and VFD tasks), the deep models obtain better
performance than standard machine learning baselines; and our interpretable mimic methods obtain
similar or better performance than the deep models. Our GBTmimic-LR-SDA and GBTmimic-
LR-DNN obtains the best performance in MOR and VFD tasks, respectively. We found that the
predictions of DNN and SDA with Logistic Regression is better than just using the deep models,
however this is not true for LSTM model. One possible reason is that LSTM captures the temporal
dependencies which help in prediction, while in other methods the time series are flattened during
input and thus the temporal relations are not efficiently modeled. Similarly, the performance of our
interpretable mimic learning methods always improve upon DNN and SDA, and are comparable to
LSTM based methods.

Table 2: Classification Results.
AUC: Mean of Area Under ROC;

AUC(std): Standard Deviation of Area Under ROC.

Method
Task

MOR VFD
AUC AUC(std) AUC AUC(std)

Baseline
SVM 0.6431 0.059 0.7248 0.056
LR 0.6888 0.068 0.7602 0.053
DT 0.5965 0.081 0.6024 0.044
GBT 0.7233 0.065 0.7630 0.051

NN-based

DNN 0.7288 0.084 0.7756 0.053
SDA 0.7313 0.083 0.7211 0.051
LSTM 0.7726 0.062 0.7720 0.061
LR-DNN 0.7300 0.084 0.7759 0.052
LR-SDA 0.7459 0.068 0.7818 0.051
LR-LSTM 0.7658 0.063 0.7665 0.063

Mimic

GBTmimic-DNN 0.7574 0.064 0.7835 0.054
GBTmimic-SDA 0.7382 0.084 0.7194 0.049
GBTmimic-LSTM 0.7668 0.059 0.7357 0.054
GBTmimic-LR-DNN 0.7673 0.070 0.7862 0.058
GBTmimic-LR-SDA 0.7793 0.066 0.7818 0.049
GBTmimic-LR-LSTM 0.7555 0.067 0.7524 0.060

Based on the observations from the above prediction results in Table 2, and by noticing that LSTM
only takes temporal features, we investigated whether time series features themselves are sufficient
for our prediction tasks (i.e. we do not consider static features in input vectors). In other words, it is
useful to demostrate whether that the temporal models are more relevant than the just static models
based on the initial settings.

We conducted two new sets of experiments, 1) with only temporal features as input, and 2) with
only static features and the initial values of temporal features at day 0. We present the results of
these experiments in Table 3 and Table 4, respectively. From Table 3 we can notice that, for MOR
task, the prediction differences between temporal and all features are quite small (i.e. AUC(diff)),
while in VFD task, we find that adding static features is relatively more critical to the prediction
performance. The different behaviours on these two tasks also explain why LSTM performs better
in MOR task than in VFD task. Note that we don’t show the LSTM results in Table 3 since we have
already used only temporal features for LSTM prediction task and the corresponding results is in
Table 2. Results from Table 4 further verified the superiority of the temporal models over just the
static model. For both MOR and VFD tasks, the performances of only static variables and initial
values of temporal variables degraded significantly on all tested models, and are even worse than the
models with only temporal features in Table 3.
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1. Sample points around xi

2. Use complex model to predict 
labels for each sample

3. Weigh samples according 
to distance to xi

4. Learn new simple model
on weighted samples

5. Use simple model to explain

(Slide credit: Marco Tulio Ribeiro)

LIME:	Local	Interpretable	Model-
Agnostic	Explanations

[Ribeiro et al., KDD ‘16]


