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1970’s:	MYCIN	expert	system
• 1970’s	(Stanford):	MYCIN	expert	

system	for	identifying	bacteria	
causing	severe	infections

• Proposed	a	good	therapy	in	
~69%	of	cases.	Better	than	
infectious	disease	experts	4 The Context of the MYCIN Experiments

USERI
Description
of new case

Advice &
Explanation

=~
User
inter-
face

EXPERT SYSTEM

qp~ InferenceEngine

t
qp_~ Knowledge [Base

FIGURE 1-1 Major parts of an expert system. Arrows indicate
information flow.

to help build a knowledge base, to explain a line of reasoning, and so forth.
The knowledge base is the program’s store of facts and associations it

"knows" about a subject area such as medicine. A critical design decision
is how such knowledge is to be represented within the program. There are
many choices, in general. For MYCIN, we chose to represent knowledge
mostly as conditional statements, or rules, of the following form:

IF: There is evidence that A and B are true,

THEN: Conclude there is evidence that C is true.

This form is often abbreviated to one of the following:

If A and B, then C

A& B--*C

We refer to the antecedent of a rule as the premise or left-hand side (LHS)
and to the consequent as the action or right-hand side (RHS).

The inference mechanism can take many forms. We often speak of
the control structure or control of inference to reflect the [’act that there
are different controlling strategies for the system. For example, a set of
rules may be chained together, as in this example:

If A, then B (Rule 1)

If B, then C (Rule 2)

A (Data)

.’.C (Conclusion)
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I am ready
** THIS IS A 26 YEAR OLD MALE PATIENT
My understanding is:
The age of the patient is 26
The sex of the patient is male
** FIVE DAYS AGO, HE HAD RESPIRATORY-TRACT SYMPTOMS
What is his name?
** JO
My understanding is:
The name of the patient is Jo
Respiratory-tract is one of the symptoms that the patient had
** A COUPLE OF DAYS BEFORE THE ADMISSION, HE HAD A MALAISE
Please give me the date of admission
** MARCH 12, 1979
My understanding is:
The patient was admitted at the hospital 3 days ago
Malaise is one of the symptoms that the patient had 5 days ago

FIGURE 33-1 Short sample dialogue. The physician’s inputs
appear in capital letters after the double asterisks.

some of the frames might rule out others, thus enabling the space of
possible inferences to be pruned. This isstie has also been raised by Char-
niak (1978). Embodying world knowledge in frames (Minsky, 1975) 
scripts (Abelson, 1973; Schank and Abelson, 1975) led to the development
of" programs that achieved a reasonably deep level of understanding, for
example, GUS (Bobrow et al., 1977), NUDGE (Goldstein and Roberts,
1977), FRUMP (DeJong, 1977) and SAM (Cullingford, 1977).

BAOBAB and the other programs mentioned so far have a common
feature: they do not interpret sentences in isolation. Rather, they interpret
in the context of an ongoing discourse and, hence, use discourse structure.
BAOBAB also explores issues of (a) what constitutes a model for structured
texts and (b) how and when topic shifts occur. However, BAOBAB is in-
terested neither in inferring implicit facts that might have occurred tem-
porally between facts explicitly described in a text nor in explaining inten-
tions of characters in stories (main emphases of works using scripts or
plans). Our program focuses instead on coherence of texts, which is mainly
a task of detecting anomalies, asking the user to clarify vague pieces of
information or disappointed expectations, and suggesting omissions. The
domain of application is patient medical summaries, a kind of text for
which language-processing research has mainly consisted of filling in for-
matted grids without demanding any interactive behavior (Sager, 1978).
BAOBAB’s objectives are to understand a summary typed in "natural med-

Dialogue	interface



1980’s:	INTERNIST-1/QMR	model
• 1980’s	(Univ.	of	Pittsburgh):	

INTERNIST-1/Quick	Medical	
Reference

• Diagnosis	for	internal	medicine

Diseases

Symptoms

flu diabetespneumonia

fatigue chest
pain

cough high
A1C

Probabilistic	model	relating:

570	binary	disease	 variables
4,075	binary	symptom	variables	
45,470	directed	edges

Elicited	from	doctors:
15	person-years	 of	work

Led	to	advances	 in	ML	&	AI	
(Bayesian	networks,	 approximate	
inference)

[Miller	et	al.,	‘86,	Shwe et	al.,	‘91]

Problems: 1. Clinicians	entered	symptoms	manually
2. Difficult	to	maintain,	difficult	to	generalize



1980’s:	automating	medical	discovery

Discovers	that	prednisone	
elevates	cholesterol
(Annals	of	Internal	Medicine,	‘86)

[Robert	Blum,	“Discovery,	Confirmation	 and	Incorporation	of	Causal	Relationships	
from	a	Large	Time-Oriented	 Clinical	 Data	Base:	The	RX	Project”.	Dept.	of	Computer	
Science,	Stanford.	1981]



1990’s:	neural	networks	in	medicine

• Neural	networks	with	
clinical	data	took	off	in	
1990,	with	88	new	
studies	that	year

• Small	number	of	
features	(inputs)

• Data	often	collected	by	
chart	review

387

where w,o is a bias weight. The ith neuron responds
to this activity by sending a signal

This type of neuron, called a perceptron, is illus-
trated in figure 1. The standard choice for the func-
tion F is the nonlinear logistic or sigmoid function

which restricts the output to be between 0 and 1. If
the incoming weighted activity is larger than the
(negative) bias weight, the activation is positive. Pos-
itive activations cause node outputs that tendj to 1.

Negative activations cause outputs that tend to 0.

Thus, the bias weight acts as a threshold above
which the node is active. For small activation levels,
the sigmoidal function is approximately linear.

Perceptrons are the basic processing element in
most neural network models. A feed-forward neural

network, called the multilayer perceptron (MLP), is
illustrated in figure 2. The network consists of sen-
sory units that make up the input layer, one or more
hidden layers of processing units (perceptrons), and
one output layer of processing units (perceptrons).
Every unit is connected to every unit in the layer
below. The input signal propagates through the net-
work a layer at a time. Because MLPs are trained
with an algorithm called error back-propagation,
they are also known as &dquo;backprop&dquo; networks.
There are many other types of networks, varying

in node models and patterns of connectivity,34 3’,‘~’4
but the MLP is the network used in nearly all med-

ical applications. Our discussion is therefore re-

stricted to MLPs.

Overall, the MLP performs a functional mapping
from the input space to the output space. The input
and output spaces are multidimensional, with one
dimension per input and output variable. The

input-output mapping is determined by the struc-
ture of the network and the values of its weights.
Changing the structure or the weights changes the
function implemented.
An MLP with a single hidden layer having H hid-

den units and a single output, y, implements map-
pings of the form

FIGURE 2. A multilayer perceptron. This is a two-layer percep-
tron with four inputs, four hidden units, and one output unit.

[Penny	&	Frost,	Neural	Networks	 in	Clinical	Medicine.	Med	Decis Making,	1996]

Problems: 1. Did	not	fit	well	into	clinical	workflow
2. Poor	generalization	to	new	places
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Table 1 9 25 Neural Network Studies in Medical Decision Making*

*For reference citations, see the reference list
tP = pnor probability of most prevalent category.
$D = ratio of tramng examples to weights per output
§A single integer in the accuracy column denotes percentage overall classification rate and a single real number between 0 and 1 indicates the

AUROCC value Neural = accuracy of neural net, Other = accuracy of best other method

differential identification of fatty liver and two

types of hepatitis on the basis of laboratory tests. 65
CART required that the ratio of two inputs be entered
explicitly as a third input. Without this extra in-
put, CART would not classify as accurately as a neural
net.

Knowledge-based expert systems have been

widely used in the medical domain. The difficulty in
eliciting rules from experts and the inconsistency
and brittleness of resulting systems have been their
main drawbacks. Neural networks offer a more di-
rect approach but have the disadvantage that their
workings are not readily interpreted.

Curve-fitting methods such as generalized spline
fitting are similar to regression methods. A differ-
ence is that the data may be approximated by many
local functions, which are then combined to form a
single global nonlinear function.

Fuzzy-logic systems implement general nonlinear
functions, which are initialized by heuristic, expert
knowledge. They are based on readily understood
but vague linguistic rules, which are given precise
meaning via algebraic operators called &dquo;member-

ship functions.&dquo;
Curve-fittings’ and fuzzy-logic methods3° are sim-

ilar to a type of neural network called a &dquo;radial basis
function network.&dquo; This is a two-layer network with

Gaussian activation-output functions in the hidden
layer and linear functions in the output layer.

Considerable research effort is being devoted to
systems involving combinations of the above-men-
tioned methods and neural networks. A recent se-
lection of studies involving such &dquo;hybrid&dquo; systems
for medical reasoning is given by Cohen and Hud-
son. 15
Table 1 shows how accurate neural nets are in

comparison with other methods. Michie et aI.51
compare machine learning, neural nets, and statis-
tical classifiers on a variety of data sets, including
classifications of heart disease, head injury, and di-
abetes.

Conclusion

Certain issues must be addressed for neural net-
works to truly perform well in medical applications.
These include choosing input and output represen-
tations and performance measures that are suitable
for the low-prevalence categories and missing data
items often found in medical data sets. If the data
set is small, then the statistical techniques of folded
cross validation and bootstrapping allow a more ac-
curate assessment of the network’s performance.
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DATA
Why	now?
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Percentage
of	hospitals
in	the	US	

Adoption	of	Electronic	Health	Records	
(EHR)	has	increased	9x	since	2008

[Henry	et	al.,	ONC	Data	Brief,	May	2016]



Large	datasets

Laboratory	for	
Computational	
Physiology

De-identified	
health	data	from	
~40K	critical	care	
patients

Demographics,	
vital	signs,	
laboratory	tests,	
medications,	
notes,	…



Large	datasets

“Data	on	nearly	
230	million	
unique	patients	
since	1995”

$$$



President	Obama’s	initiative	to	create	a	1	million	
person	research	cohort

[Precision	Medicine	 Initiative	 (PMI)	working	Group	Report,	Sept.	17	2015]

Intensify efforts to apply precision medicine to cancer.

Knowledge to 
overcome drug 
resistance

Use of 
combination 
therapies

Innovative clinical trials 
of targeted drugs for 
adult, pediatric cancers

THE PRECISION MEDICINE INITIATIVE

NEAR TERM GOALS

WHAT IS IT?

WHY NOW?

Precision medicine is an emerging approach for disease 
prevention and treatment that takes into account people’s 
individual variations in genes, environment, and lifestyle.

The Precision Medicine Initiative will generate the scientific 
evidence needed to move the concept of precision 
medicine into clinical practice.

The time is right because of:

Sequencing 
of the human 
genome

Improved 
technologies for 
biomedical analysis

New tools  
for using large 
datasets

Follow the Initiative’s progress and consider 
volunteering for this landmark effort. 

www.nih.gov/precisionmedicine

Create a research cohort of > 1 million American volunteers who will 
share genetic data, biological samples, and diet/lifestyle information, all 
linked to their electronic health records if they choose.

LONGER TERM GOALS

001101010110100
10110010101100110
0010101101010010
0100010101111010

Pioneer a new model for doing science that emphasizes engaged 
participants, responsible data sharing, and privacy protection. 

Research based upon the cohort data will:

• Advance pharmacogenomics, the right drug for the right patient at the 
right dose

• Identify new targets for treatment and prevention

• Test whether mobile devices can encourage healthy behaviors

• Lay scientific foundation for precision medicine for many diseases

Large	datasets

Core	data	set:
• Baseline	health	exam
• Clinical	data	derived	

from	electronic	health	
records	(EHRs)

• Healthcare	claims
• Laboratory	data



Diversity	of	digital	health	data

genomics

imaging

phone

lab tests

vital signs

proteomics 

devices

social media



Standardization

• Diagnosis	codes:	ICD-9	and	
ICD-10	(International	
Classification	of	Diseases)

[https://blog.curemd.com/the-most-bizarre-
icd-10-codes-infographic/]

[https://en.wikipedia.org/wiki/Lis
t_of_ICD-9_codes]

…
…

…



Standardization

• Diagnosis	codes:	ICD-9	and	
ICD-10	(International	
Classification	of	Diseases)

• Laboratory	tests:	LOINC	
codes

• Pharmacy:	National	Drug	
Codes	(NDCs)

• Unified	Medical	Language	
System	(UMLS):	millions	of	
medical	concepts

[http://oplinc.com/newsletter/index_May08.htm]



ALGORITHMS
Why	now?



Advances	in	machine	learning

• Major	advances	in	ML	&	AI
– Learning	with	high-dimensional	features	(e.g.,	l1-
regularization)

– Semi-supervised	and	unsupervised	learning
–Modern	deep	learning	techniques	(e.g.	convnets,	
variants	of	SGD)	

• Democratization	of	machine	learning
– High	quality	open-source	software,	such	as	
Python’s	scikit-learn,	TensorFlow,	Torch,	Theano



Industry	interest	in	AI	&	healthcare
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Emergency	Department:
• Limited	resources
• Time	sensitive
• Critical	decisions



Triage	Information
(Free	text)

Lab	results
(Continuous	valued)

MD	comments
(free	text)

Specialist	consults Physician	
documentation

Repeated	vital	signs	
(continuous	values)
Measured	every	30	s

T=0

30	min 2	hrs

Disposition

Data	in	Emergency	Department	(ED)

Collaboration	with
Steven	Horng,	MD

Electronic	 records	 for	over	300,000	ED	visits



Opportunities	for	machine	learning
• Triggering	clinical	pathways
• Context-specific	displays
• Risk	stratification
• Improving	clinical	
documentation

Pathways	have	been	shown	to	
reduce	in-hospital	complications	
without	increasing	costs
[Rotter et	al	2010]

BIDMC	Cellulitis Clinical	Pathway
Flowchart	



Opportunities	for	machine	learning

Automating	triggers
Don’t	rely	on	the	user’s	knowledge

that	the	pathway	exists!

• Triggering	clinical	pathways
• Context-specific	displays
• Risk	stratification
• Improving	clinical	
documentation

Our task:
Determine whether a patient
has or is suspected to have
cellulitis



Opportunities	for	machine	learning

Automatically	place	specialized	
order	sets	on	patient	displays

Our task:
Determine whether patient
complained of chest pain,
or is a psych patient

• Triggering	clinical	pathways
• Context-specific	displays
• Risk	stratification
• Improving	clinical	
documentation



Opportunities	for	machine	learning
• Triggering	clinical	pathways
• Context-specific	displays
• Risk stratification
• Improving	clinical	
documentation

Ex	1:	Likelihood	of	
mortality	or	admission	
to	ICU

Ex	2:	Early	detection	of	
severe	sepsis

(Topic	of	next	week’s	lecture)



Real-time	predictions	in	BIDMC	
emergency	department

Acute
Abdominal	 pain
Allergic	reaction
Ankle	fracture
Back	pain
Bicycle	accident
Cardiac	etiology
Cellulitis
Chest	pain
Cholecystitis
Cerebrovascular
accident

Deep	vein	thrombosis
Employee	exposure
Epistaxis
Gastroenteritis
Gastrointestinal	 bleed
Geriatric	fall
Headache
Hematuria
Intracerebral
hemorrhage
Infection
Kidney	stone

Laceration
Motor	vehicle	accident
Pancreatitis
Pneumonia
Psych
Obstruction
Septic	shock
Severe	sepsis
Sexual	assault
Suicidal	 ideation
Syncope
Urinary	tract	infection

[Halpern,	Horng,	Choi,	Sontag,	JAMIA	‘16]

History
Alcoholism
Anticoagulated
Asthma/COPD
Cancer
Congestive	 heart	
failure
Diabetes
HIV+
Immunosuppressed
Liver	malfunction



Opportunities	for	machine	learning
• Triggering	clinical	pathways
• Context-specific	displays
• Risk	stratification
• Improving	clinical	
documentation



Table 1. Performance of the different negation detection algorithms on 200 test sentences.

NegEx Added rules Perceptron

Precision 0.699 0.833 0.901

Recall 0.875 0.982 0.925

F1 0.777 0.901 0.913

Table 2. Performance of the linear SVMs on chief complaint prediction, without and with negation detection.  The 

Best-n accuracy measures how often the list of n most likely predicted labels actually contained all of the true chief 

complaints, and DCG stands for the Discounted Cumulative Gain, which measures the quality of the whole ranking.

many-to-one Multiclass SVM

Negation detection none perceptron none perceptron

Best-5 0.496 0.511 0.753 0.757

Best-10 0.615 0.620 0.819 0.825

DCG 0.381 0.393 0.601 0.613

Figure 1.  Screenshots  of  the  system now running at  BIDMC hospital  on  note:  69  y/o M patient  with severe  

intermittent RUQ pain. Began soon after eating bucket of ice cream and cupcake. Also is a heavy drinker. Left: the 

system correctly proposes both ‘RUQ abdominal pain’ and ‘Allergic reaction’ as possible chief complaints. Right: 
If the nurse does not see the label they want, they can start typing and see a list of suggested auto-completes. Again, 

the four most likely labels describe ‘RUQ abdominal pain’ and ‘Allergic reaction’.
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Improving	documentation:	Chief	complaints

Triage	note

Predicted	
chief	

complaints Contextual	
auto-

complete

Using	for	all	55,000	patients/year	that	present	at	BIDMC	ED

Changed	workflow	to	have	chief	complaints	assigned	last.	Predict	them.



100%

0%

Date

Percentage	of	standardized	chief	complaints
(per	week)

E-mail	notificationsEnabled	
for	all	
nurses

Enabled	predictions	
for	a	few	triage	nurses

Drop	down	list	(no	predictions)

Improving	documentation:	Chief	complaints



Zooming	out…

Patient:

Demographic	
data:

-Age/gender
-Socioeconomic	
status,	lifestyle
-Company	code

Medical	Claims:
-ICD9	diagnosis	code
-CPT	code	(procedure)
-Specialty
-Location	of	service
-Date	of	Service

Lab	Tests:
-LOINC	code	(urine	or	
blood	test	name)
-Results	(actual	values)
-Lab	ID
-Range	high/low-Date

Medications:
-NDC	code	(drug	
name)	
-Days	of	supply
-Quantity
-Service	Provider	ID
-Date	of	fill

time

Collaboration	with:

10	years



Temporal	modeling	of	disease	
progression

• Find	markers	of	disease	stage	and	progression,	statistics	of	
what	to	expect	when
– What	is	the	“typical	trajectory”	of	a	female	diagnosed	with	
Sjögren’s syndrome	at	the	age	of	19?

• Estimate	a	patient’s	future	disease	progression
– When	will	a	specific	individual	with	smoldering	multiple	
myeloma	(a	rare	blood	cancer)	transition	to	full-blown	
multiple	myeloma?

– Which	second-line	diabetes	treatment	should	we	give	to	a	
patient?



Me

Patient	2

Patient	1

20	years

?????

…



Me

Patient	2

Patient	1

20	years

…



Me

time

???
Drug	A

Drug	B

or

Patient	1
Drug	A

Drug	C

Patient	2
Drug	B
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What	makes	healthcare	different?
• Life	or	death	decisions
– Need	robust algorithms
– Checks	and	balances	built	into	ML	deployment
– (Also	arises	in	other	applications	of	AI	such	as	autonomous	
driving)

– Need	fair and	accountable	algorithms
• Many	questions	are	about	unsupervised	learning
– Discovering	disease	subtypes,	or	answering	question	such	
as	“characterize	the	types	of	people	that	are	highly	likely	to	
be	readmitted	to	the	hospital”?

• Many	of	the	questions	we	want	to	answer	are	causal
– Naïve	use	of	supervised	machine	learning	is	insufficient



What	makes	healthcare	different?

• Often	very	little	labeled	data	(e.g.,	for	clinical	
NLP)
–Motivates	semi-supervised	learning	algorithms

• Sometimes	small	numbers	of	samples	(e.g.,	a	
rare	disease)
– Learn	as	much	as	possible	from	other	data	(e.g.	
healthy	patients)

–Model	the	problem	carefully
• Lots	of	missing	data,	varying	time	intervals,	
censored	labels



What	makes	healthcare	different?

• Difficulty	of	de-identifying	data
– Need	for	data	sharing	agreements	and	sensitivity

• Difficulty	of	deploying	ML
– Commercial	electronic	health	record	software	is	
difficult	to	modify

– Data	is	often	in	silos;	everyone	recognizes	need	for	
interoperability,	but	slow	progress

– Careful	testing	and	iteration	is	needed
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Course	staff
• David	Sontag	(instructor)
– Assistant	professor	in	EECS,	joint	IMES	&	CSAIL
– PhD	MIT,	then	5	years	as	professor	at	NYU
– Leads	clinical	machine	learning	research	group

• Maggie	Makar	(teaching	assistant)
– PhD	student	with	John	Guttag,	studying	ML	for	
healthcare

– Before	PhD,	worked	for	2.5	yrs as	researcher	at	
Brigham	and	Women’s	hospital

• We	prefer	Piazza	to	e-mail.	If	e-mail	necessary,	
please	send	to	6.s897hst.s53@gmail.com



Prerequisites
• Must	submit	pre-req quiz	(on	course	website)	by	
11:59PM	EST	today

• We	assume	previous	undergraduate-level	ML	
class,	and	comfort	with:
– Machine	learning	methodology	(e.g.	generalization,	
cross-validation)

– Supervised	machine	learning	techniques	(e.g.	L1-
regularized	logistic	regression,	SVMs,	decision	trees)

– Optimization	for	ML	(e.g.	stochastic	gradient	descent)
– Clustering	(e.g.	k-means)
– Statistical	modeling	(e.g.	Gaussian	mixture	models)



Logistics
• Course	website:	

http://people.csail.mit.edu/dsontag/courses/mlhc17/

• All	announcements	made	via	Piazza	– make	sure	you	are	signed	
up	for	it!

• Office	hours	will	be	announced	next	week
• Grading:

– 25%	homework	 (2-3	problem	 sets)
– 25%	participation
– 50%	course	project

• Because	of	space	limitations,	auditors	must	obtain	permission	
of	course	staff	(e-mail	6.s897hst.s53@gmail.com)



Homework	(tentative)

• PS0	(this	week):	CITI	“Data	or	Specimens	Only	
Research”	training
https://mimic.physionet.org/gettingstarted/ac
cess/

• PS1:	Supervised	ML	on	real-world	clinical	data,	
survival	analysis,	causal	inference

• PS2:	Neural	nets	for	diagnosis	from	medical	
images	and/or	time	series

• PS3:	Disease	progression	modeling



Readings

• 2-4	required	readings	most	weeks
– Research	articles,	ranging	from	applied	to	theoretical
– Required	response	to	readings	(short	questions;	fast)	
that	you	submit	prior	to	next	class

• Background	videos	(optional)
– Neural	networks	(convnets,	recurrent	neural	nets)
– Bayesian	networks
– We	will	assume	that	you	have	watched	these	before	
the	relevant	lecture



Projects

• This	will	be	the	most	interesting	part	of	class,	
and	where	you	will	learn	the	most

• Teams	of	4-5	students
• Use	real-world	clinical	data!
• Two	types	of	projects:
– 6-8	projects	proposed	by	clinical	mentors,	working	
closely	with	them	on	their data

– Your	own	design,	using	publicly	available	data



#1:	When	does	deployed	ML	break?
Adam	Wright,	 PhD
Brigham	and	Women’s	Hospital
Associate	Professor	 of	Medicine,	 Harvard	Medical	School

Clinical	
mentor:

[Wright	A,	et	al.	“Analysis	 of	clinical	 decision	 support	system	malfunctions:	 a	case	
series	 and	survey.”	J	Am	Med	Inform	Assoc (2016)	23	(6):	1068-1076]

Goal:	anomaly	
detection	system	
to	identify	clinical	
decision	support	
malfunctions

METHODS
The case studies describe CDSS malfunctions that occurred at the
Brigham and Women’s Hospital (BWH). Until very recently, BWH used
the longitudinal medical record (LMR) in the outpatient setting. The
LMR was developed locally at BWH and certified by an Office of the
National Coordinator for Health Information Technology Authorized
Testing and Certification Body. The first case was identified through
happenstance, and the remaining three were found by carefully exam-
ining alert firing data. In each case, our team conducted an extensive
investigation of the CDSS malfunction in order to identify key factors
that contributed to the issue. These investigations included a review of
alert firing logs, alert rule logic, alert system configuration, audit data,
interviews with system developers and users, and audits of source
code and system design specifications.

To estimate the size of each anomaly, we extracted the alert
firing data for each of the four alerts that exhibited an anomaly, and
divided them into data from the period when the malfunction oc-
curred and data from before and after the malfunction occurred. We
fit a linear model to the nonanomalous data, adjusting for the date
(to account for typical increases in alert volume over time) and
whether each date was a weekday or weekend day (because, typi-
cally, many fewer alerts fire on weekend days). We then used this
model to estimate the expected number of alert firings per day

during the period when the malfunction occurred, assuming the alert
was working correctly, and subtracted the actual number of firings
during the period when the malfunction occurred to estimate the
number of excess or missed alert firings while the malfunction was
happening.

We conducted these case studies at BWH because we had com-
plete access to the information systems in place there and their source
code, the ability to access all data-related to the alerts, and the oppor-
tunity to interview the developers and implementers of the systems,
which allowed us to conduct a thorough analysis of the issues. We hy-
pothesize, however, that the CDSS malfunctions that occurred at BWH
are representative of the types of CDSS malfunctions that occur in
self-developed and commercial EHR systems around the world.

We explored this hypothesis by conducting a preliminary survey of a
sample of CMIOs at hospitals across the United States to assess com-
mon patterns in CDSS malfunctions. The survey was informed by the re-
sults of the four BWH case studies and asked respondents about the
types of CDS in use in their organizations, the frequency with which
CDSS malfunctions occur at their organizations, contributing factors,
modes of detection, and the respondent’s confidence in the ability of
their processes and procedures to prevent or detect CDSS malfunctions.

Both the case studies and the survey were reviewed and approved
by the Partners HealthCare Human Subjects Committee.

Figure 1: Laboratory monitoring reminders for amiodarone in the Partners Healthcare longitudinal medical record (LMR). The main screen
of the LMR is shown in the background, with the reminders enlarged and the amiodarone reminders highlighted in a box.
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#1:	When	does	deployed	ML	break?
Adam	Wright,	 PhD
Brigham	and	Women’s	Hospital
Associate	Professor	 of	Medicine,	 Harvard	Medical	School

Clinical	
mentor:

[Wright	A,	et	al.	“Analysis	 of	clinical	 decision	 support	system	malfunctions:	 a	case	
series	 and	survey.”	J	Am	Med	Inform	Assoc (2016)	23	(6):	1068-1076]

Goal:	anomaly	
detection	system	
to	identify	clinical	
decision	support	
malfunctions

RESULTS
Case Study 1: Monitoring Thyroid Function in Patients
Receiving Amiodarone
While participating in a cross-vendor evaluation of user-defined
CDS,25 one investigator (A.W.) was giving a demonstration of the LMR
and attempted to show its drug-lab monitoring alert capabilities,26 us-
ing the system’s suggestion of thyroid-stimulating hormone (TSH) test-
ing for patients who have been on amiodarone for at least 1 year as
an example. Amiodarone is an antiarrhythmic drug with many side ef-
fects, including, commonly, hypothyroidism and, less commonly,
hyperthyroidism. As a result, our hospital considers it important to
monitor the thyroid function of patients taking amiodarone by perform-
ing a TSH test annually while the patient is receiving the drug. The
LMR team created an alert (shown in Figure 1) that suggested ordering
a TSH test if the patient has been on amiodarone for at least 1 year

and has not had a TSH test within the last year. The pseudocode for
the alert is shown in Figure 2.

During the demonstration, the alert unexpectedly failed to fire for
several test patients that had been on amiodarone for more than a
year and had never had a TSH test. Working with the Partners
HealthCare knowledge management team, we discovered that, in
November 2009, the LMR’s internal code for amiodarone had been
changed from 40 to 7099, but the rule logic in the system was never
updated to reflect this change. The issue was discovered during the
demonstration described above, which took place in February 2013,
and fixed the next day.

Panel 1 of Figure 3 shows the pattern of alert firing at BWH. Light
blue dots show the number of firings, per day, on weekdays, and
dark blue dots show the number of firings on weekend days. The
superimposed horizontal blue bar shows the period of malfunction.
The malfunction of the amiodarone-TSH alert was initially subtle, be-
cause patients who were already receiving amiodarone retained drug
ID code 40 in their record, and, thus, the alert continued to fire for
these patients; the alert only failed to fire for patients who were
started on amiodarone since the November 2009 change in amiodar-
one’s drug ID code in the LMR. Because the alert does not fire until a
patient has been on amiodarone for at least a year, there was no ob-
servable effect for the first year, and then the rate of alerting subtly
fell as some patients were taken off amiodarone (with the old code
40) and others were started on amiodarone (with the new internal
LMR code 7099). The abrupt increase in the alert firing rate for the
amiodarone/TSH test alert at the end of the blue bar in Figure 3 rep-
resents when the alert logic was corrected to include amiodarone’s
new drug ID code, and the alert began firing again for all patients
who were receiving amiodarone (codes 40 or 7099). During the

Figure 2: Pseudocode representation of the amiodarone/thy-
roid-stimulating hormone (TSH) test reminder.

Figure 3: Firing rate of four alerts at Brigham and Women’s Hospital over a 5-year period (weekend days are represented by darker
dots, and weekdays are represented by lighter dots), with anomalies indicated (superimposed horizontal bars show anomalous periods).
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#2:	Improving	accuracy	of	CDS	alerts
Adam	Wright,	 PhD
Brigham	and	Women’s	Hospital
Associate	Professor	 of	Medicine,	 Harvard	Medical	School

Clinical	
mentor:

• Most	clinical	decision	support	(CDS)	systems	are	simple	&	
rule-based	(“If	the	patient	is	over	65	and	has	not	received	a	
vaccination,	suggest	one”)

• Once	deployed,	we	gather	data	on	when	CDS	alerts	are	
ignored	or	overridden	by	users

• Goal:	use	machine	learning	to	improve	accuracy	of	alerts.	
Other	angles	we	might	consider:
– Clustering	 to	understand	why alerts	were	overridden
– Tackling	 the	false	negatives,	 i.e.	broadening	 the	alerts
– Deep	 learning	on	clinical	text
– Learning	interpretable	models



#3	Predicting	antibiotic	resistance

• Culture	results	can	take	up	to	6	days
• Patients	are	started	on	empiric	antibiotics	based	on	

population-level	resistance	patterns
• Critical	patients,	if	started	on	wrong	antibiotics,	may	not	

survive	that	long
• Can	we	predict	a	patient’s	personalized	antibiotic	resistance	

profile	even	before	their	culture	is	available?

Steven	Horng,	MD	MMSc
Eugene	Kim,	MD
Beth	Israel	Deaconess	Medical	Center
Dept.	of	Emergency	Medicine

Clinical	
mentors:

Sanjat Kanjilal,	 MD	MPH
Massachusetts	 General	Hospital
Div.	of	Infectious	 Diseases



#4	Progression	of	Congestive	Heart	Failure

• Heart	unable	to	pump	enough	blood	to	meet	body’s	demands
• Heart	 failure	hospitalizations	cost	the	US	over	$17	billion/year

– Physicians	struggle	to	diagnose	&	treat	heart	failure	exacerbations	 before	
patients	 require	hospitalization

• Patients	with	heart	failure	progress	at	different	 rates.	 It	is	unclear	when	
patients	will	worsen,	and	the	gold	standard	 test	is	infrequently	performed

• Goal:	predict	heart	 failure	progression	 using	frequently	collected	data	in	
the	electronic	medical	record
– Vitals,	medications,	 orders,	laboratory	tests,	 echocardiography	&	chest	x-ray	

reports

Steven	Horng,	MD	MMSc
Beth	Israel	Deaconess	Medical	Center
Dept.	of	Emergency	Medicine

Clinical	
mentors:

Sandeep	Gangireddy,	MD
Beth	Israel	Deaconess	Medical	Center	
Cardiologist,	 Informatics	Research	 Fellow



PUBLICLY	AVAILABLE	DATASETS
Projects



Critical	care	(~40K	patients)



Multiple	Myeloma	(975	patients)



Parkinson’s	disease	(400+	subjects)



Mammography	(86K	subjects)

Competitive Period Launch: Nov 18, 2016
Competitive Period Close: May 9, 2017

Out	of	1000	women	screened,	only	5	will	have	breast	cancer

Goal:	develop	algorithms	for	risk	stratification	of	screening	
mammograms	that	can	be	used	to	improve	breast	cancer	
detection



Pathology	(200	patients)

Competitive Period Launch: Nov 20, 2016
Competitive Period Close: April 1, 2017

Normal

Metastasis

Whole	slide	images	with	lesion-level	annotations	of	metastases



Diabetic
retinopathy

Enter Competition By: Mar 31, 2017
Competitive Period Close: April 12, 2017

(Last year’s challenge was on 
diagnosing heart disease – data also 
available, via Kaggle)

Lung	cancer

https://www.kaggle.com/c/diabetic-
retinopathy-detection


